• Title/Summary/Keyword: heavy metal removal

Search Result 483, Processing Time 0.028 seconds

Adsorption Characteristics of Heavy Metals by Various Forest Humic Substances

  • Ahn, Sye-Hee;Koo, Bon-Wook;Choi, In-Gyu
    • Journal of the Korean Wood Science and Technology
    • /
    • v.31 no.6
    • /
    • pp.73-82
    • /
    • 2003
  • Various forest humic substances were collected at different climate regions with different forest types, and adsorption of heavy metals such as Cu(II), Zn(II), Cd(II) and Cr(III) were characteristically conducted to obtain optimal adsorption conditions and to evaluate the removal efficiency of heavy metals by each forest humic substance. The adsorption isotherms for Cu(II), Zn(II), Cd(II) and Cr(III) conformed to Langmuir's equation. In the stirred reactor, the removal efficiencies of Cu(II), Zn(II) and Cd(II) by forest humic substances were more than 90% but that of Cr(III) was less than 60%. The adsorption capacities of heavy metals in the stirred reactor were considerably varied depending on the type of forest humic substances. Among humic substances, the one from deciduous forest at subtropical region showed the highest removal efficiency for Cu(II). There was no significant difference in removal efficiency by each heavy metal depending on reaction temperature ranged from 20 to 50oC except for Cr(III), and the adsorptions of Cu(II), Zn(II) and Cd(II) were occurred rapidly in the incipient stage within 10 min, while Cr(III) needed more reaction time to be adsorbed. The stirred and packed bed column reactors showed similar adsorption characteristics of heavy metals by humic substances, but the removal efficiency was considerably higher in the packed bed column reactor than in the stirred reactor. Therefore, in actual operation process, a continuous packed bed column reactor was more economical.

Effects of Heavy Metals on the Beware Treatment Process by Water Hyacinth (중금속이 수생히야신스(부레옥잠)를 이용한 하수처리 공정에 미치는 영향)

  • 정재욱;유홍일;유재근
    • Journal of environmental and Sanitary engineering
    • /
    • v.9 no.2
    • /
    • pp.110-119
    • /
    • 1994
  • The objective of the this study was to evaluate the effects of heavy metals on the sewage treatment process designed to remove organic material and nutrients using Water- hyacinth ( Eichhornia crassipes ). Batch experiments were carried out using domestic sewage spiked with different level of heavy metal mixtures ( Cd, Pb and Cu ). The specific growth rates of Water- hyacinth ranged from 0.0008 to 0.0015 1/day( operated at water temperatures of 22 ∼30$\circ $c ) and increased as the concentration of heavy metals decreased. The test result showed that the permissible maximum concentrations Cd, Pb and Cu for the growth of Water- hyacinth were 0.5, 1, and 6 mg/ℓ respectively. Under these maximum permissible heavy metal loads, removal rate of organic material, nitrogen and phosphorus were 85%,75% and 75% , respectively, during 40days of the test period.

  • PDF

Removal Efficiency of the Heavy Metals Zn(II), Pb(II) and Cd(II) by Saprolegnia delica and Trichoderma viride at Different pH Values and Temperature Degrees

  • Ali, Esam H.;Hashem, Mohamed
    • Mycobiology
    • /
    • v.35 no.3
    • /
    • pp.135-144
    • /
    • 2007
  • The removal efficiency of the heavy metals Zn, Pb and Cd by the zoosporic fungal species Saprolegnia delica and the terrestrial fungus Trichoderma viride, isolated from polluted water drainages in the Delta of Nile in Egypt, as affected by various ranges of pH values and different temperature degrees, was extensively investigated. The maximum removal efficiency of S. delica for Zn(II) and Cd(II) was obtained at pH 8 and for Pb(II) was at pH 6 whilst the removal efficiency of T. viride was found to be optimum at pH 6 for the three applied heavy metals. Regardless the median lethal doses of the three heavy metals, Zn recorded the highest bioaccumulation potency by S. delica at all pH values except at pH 4, followed by Pb whereas Cd showed the lowest removal potency by the fungal species and vice versa in case of T. viride. The optimum bio-mass dry weight production by S. delica was found when the fungus was grown in the medium treated with the heavy metal Pb at pH 6, followed by Zn at pH 8 and Cd at pH 8. The optimum biomass dry weight yield by T. viride amended with Zn, Pb and Cd was obtained at pH 6 for the three heavy metals with the maximum value at Zn. The highest yield of biomass dry weight was found when T. viride treated with Cd at all different pH values followed by Pb whilst Zn output was the lowest and this result was reversed in case of S. delica. The maximum removal efficiency and the biomass dry weight production for the three tested heavy metals was obtained at the incubation temperature $20^{\circ}C$ in case of S. delica while it was $25^{\circ}C$ for T. viride. Incubation of T. viride at higher temperatures ($30^{\circ}C\;and\;35^{\circ}C$) enhanced the removal efficiency of Pb and Cd than low temperatures ($15^{\circ}C\;and\;20^{\circ}C$) and vice versa in case of Zn removal. At all tested incubation temperatures, the maximum yield of biomass dry weight was attained at Zn treatment by the two tested fungal species. The bioaccumulation potency of S. delica for Zn was higher than that for Pb at all temperature degrees of incubation and Cd bioaccumulation was the lowest whereas T. viride showed the highest removal efficiency for Pb followed by Cd and Zn was the minor of the heavy metals.

A Survey of water pollution and the development of water treatment system on agricultural Area (농어촌의 수질오염과 수질특성에 적합한 정수 처리시스템의 개발에 관한 연구(1))

  • 정문호;김영규;조태석;배현주;신명옥;김수연;김민지;김민영;김수복
    • Journal of environmental and Sanitary engineering
    • /
    • v.12 no.2
    • /
    • pp.65-74
    • /
    • 1997
  • The purpose of this study was to investigate the removal effect and variation of contaminated water by various water treatment processes using sediment filter, activated carbon, photocatalysis, reverse osmosis, ultra violet sterilizer and ultra filtration. The removal effect of chloride and trace metal was low by activated carbon and ultra filter but high in reverse osmosis. The removal effect of bacteria and E. coli was low by activated carbon and membrane filter system using activated carbon but high in impregnated activated carbon. The removal effect of TCE was low in sand and ultra filter system as compared with activated carbon. Ultra filtration process was effective for purify agricultural water without E.coli. Reverse osmosis was effective to remove heavy metal and activated carbon was effective to remove halogenated organic chemical compound. The flux and the removal effect of COD in spiral wound ultrafilter were higher than the hollow fiber ultrafilter.

  • PDF

Glutamic Acid-Grafted Metal-Organic Framework: Preparation, Characterization, and Heavy Metal Ion Removal Studies

  • Phani Brahma Somayajulu Rallapalli;Jeong Hyub Ha
    • Applied Chemistry for Engineering
    • /
    • v.34 no.5
    • /
    • pp.556-565
    • /
    • 2023
  • Fast industrial and agricultural expansion result in the production of heavy metal ions (HMIs). These are exceedingly hazardous to both humans and the environment, and the necessity to eliminate them from aqueous systems prompts the development of novel materials. In the present study, a UIO-66 (COOH)2 metal-organic framework (MOF) containing free carboxylic acid groups was post-synthetically modified with L-glutamic acid via the solid-solid reaction route. Pristine and glutamic acid-treated MOF materials were characterized in detail using several physicochemical techniques. Single-ion batch adsorption studies of Pb(II) and Hg(II) ions were carried out using pristine as well as amino acid-modified MOFs. We further examined parameters that influence removal efficiency, such as the initial concentration and contact time. The bare MOF had a higher ion adsorption capacity for Pb(II) (261.87 mg/g) than for Hg(II) ions (10.54 mg/g) at an initial concentration of 150 ppm. In contrast, an increased Hg(II) ion adsorption capacity was observed for the glutamic acid-modified MOF (80.6 mg/g) as compared to the bare MOF. The Hg(II) ion adsorption capacity increased by almost 87% after modification with glutamic acid. Fitting results of isotherm and kinetic data models indicated that the adsorption of Pb(II) on both pristine and glutamic acid-modified MOFs was due to surface complexation of Pb(II) ions with available -COOH groups (pyromellitic acid). Adsorption of Hg(II) on the glutamic acid-modified MOF was attributed to chelation, in which glutamic acid grafted onto the surface of the MOF formed chelates with Hg(II) ions.

Recent Progress on Adsorptive Removal of Cd(II), Hg(II), and Pb(II) Ions by Post-synthetically Modified Metal-organic Frameworks and Chemically Modified Activated Carbons

  • Rallapalli, Phani Brahma Somayajulu;Choi, Suk Soon;Ha, Jeong Hyub
    • Applied Chemistry for Engineering
    • /
    • v.33 no.2
    • /
    • pp.133-144
    • /
    • 2022
  • Fast-paced industrial and agricultural development generates large quantities of hazardous heavy metals (HMs), which are extremely damaging to individuals and the environment. Research in both academia and industry has been spurred by the need for HMs to be removed from water bodies. Advanced materials are being developed to replace existing water purification technologies or to introduce cutting-edge solutions that solve challenges such as cost efficacy, easy production, diverse metal removal, and regenerability. Water treatment industries are increasingly interested in activated carbon because of its high adsorption capacity for HMs adsorption. Furthermore, because of its huge surface area, abundant functional groups on surface, and optimal pore diameter, the modified activated carbon has the potential to be used as an efficient adsorbent. Metal-organic frameworks (MOFs), a novel organic-inorganic hybrid porous materials, sparked an interest in the elimination of HMs via adsorption. This is due to the their highly porous nature, large surface area, abundance of exposed adsorptive sites, and post-synthetic modification (PSM) ability. This review introduces PSM methods for MOFs, chemical modification of activated carbons (ACs), and current advancements in the elimination of Pb2+, Hg2+, and Cd2+ ions from water using modified MOFs and ACs via adsorption.

Removal of Heavy Metal and ACE Inhibition of Yam Mucilage (마 점질물의 중금속 제거능과 ACE저해 효과)

  • 하영득;이삼빈;곽연길
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.27 no.4
    • /
    • pp.751-755
    • /
    • 1998
  • Functional properties of yam mucilage were investigated by physicochemical analysis. Yam mucilage was extracted from the root of yam and then separated into two fractions by its selective aggregation with isopropanol concentration. Each mucilge fraction showed the excellent binding properties with heavy metal ions Co, Cr and Cu. Cr showed the higher affinity with mucilage than Co and Cu at pH 6.3. In ACE inhibition, IC50 values of mucilage fraction 1 and 2 showed 8.99$\mu\textrm{g}$/${mu}ell$ and 7.1$\mu\textrm{g}$/${mu}ell$, respectively.

  • PDF

Evaluation on the suspended solids and heavy metals removal mechanisms in bioretention systems

  • Geronimo, Franz Kevin F.;Maniquiz-Redillas, Marla C.;Hong, Jungsun;Kim, Lee-Hyung
    • Membrane and Water Treatment
    • /
    • v.10 no.1
    • /
    • pp.91-97
    • /
    • 2019
  • Application of bioretention systems in Korea is highly considered due to its minimal space requirements, appropriateness as small landscape areas and good pollutant removal and peak hydraulic flow reduction efficiency. In this study, the efficiency of two lab-scale bioretention types having different physical properties, media configuration and planted with different shrubs and perennials was investigated in reducing heavy metal pollutants in stormwater runoff. Type A bioretention systems were planted with shrubs whereas type B were planted with perennials. Chrysanthemum zawadskii var. latilobum (A-CL) and Aquilegia flabellata var. pumila (A-AP) respectively were planted in each type A bioretention reactors while Rhododendron indicum linnaeus (B-RL) and Spiraea japonica (B-SJ), respectively were planted in each type B bioretention reactors. Results revealed that the four lab-scale bioretention reactors significantly reduced the influent total suspended load by about 89 to 94% (p<0.01). Type B-RL and B-SJ reactors reduced soluble Cr, Cu, Zn, and Pb by 28 to 45% that were 15 to 35% greater than the soluble metal reduction of type A-CL and A-AP reactors, respectively. Among the pollutants, total Cr attained the greatest discharged fraction of 0.52-0.81. Excluding the effect of soil media, total Pb attained the greatest retention fraction in the bioretention systems amounting to 0.15-0.34. Considering the least discharge fraction of heavy metal in the bioretention system, it was observed that the bioretention systems achieved effectual reduction in terms of total Cu, Zn and Pb. These findings were associated with the poor adsorption capacity of the soil used in each bioretention system. The results of this study may be used for estimating the maintenance requirements of bioretention systems.

Removal Characteristics of Mixed Heavy Metals from Aqueous Solution by Recycled Aggregate as Construction Waste (건설폐기물인 순환골재를 이용한 수용액상에서의 혼합 중금속 제거 특성)

  • Shin, Woo-Seok;Kim, Young-Kee
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.16 no.2
    • /
    • pp.115-120
    • /
    • 2013
  • This study examined the removal rate of mixed heavy metals from aqueous solution using recycled aggregate. The recycled aggregate is favorable for the absorbent because it contains about 95% (CaO, $SiO_2$, $Al_2O_3$ and $Fe_2O_3$), which are major ingredient of adsorbent for heavy metal. The kinetic data presented that the slow course of adsorption follows the Pseudo first and second order models. The equilibrium data were well fitted by the Langmuir model and showed the affinity order: $Cu^{2+}$ > $Pb^{2+}$ > $$Zn^{2+}{\simeq_-}Ni^{2+}$$ > $Cd^{2+}$. The results also showed that adsorption rate slightly increased with increasing pH from 6 to 10. Moreover, this trend is similar to results obtained as function of loading amount of recycled aggregate. Meanwhile, an unit adsorption rate was slightly decreased. From these results, it was concluded that the absorbents can be successfully used the removal of the heavy metals from the aqueous solutions.

Removal of Heavy Metal Ions by Electrocoagulation for Continuous Use of Fe2+/Fe3+-Mediated Electrochemical Oxidation Solutions

  • Jung, Youn-Su;Pyo, Myoung-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.5
    • /
    • pp.974-978
    • /
    • 2008
  • Removal of heavy metal ions ($Cd^{2+}$ and $Zn^{2+}$) by electrocoagulation (ECG) was investigated in an acidic condition, which is necessary for re-using or discharging the mediated electrochemical oxidation (MEO) media. Effects of various parameters such as electrolytes, current densities, and electrode materials were examined for a metal-contaminated MEO system using $Fe^{2+}/Fe^{3+}$ pairs as a mediator. It was found that ECG with Al electrodes is greatly affected by the presence of $Fe^{2+}$. [$Cd^{2+}$] and [$Zn^{2+}$] remain constant until [$Fe^{2+}$] reaches a certain concentration level (ca. 10 mM). This preferential removal of $Fe^{2+}$ during ECG with Al electrodes is not alleviated by controlling current densities, potential programs, and solution mixing. ECG with Fe electrodes, on the other hand, resulted in relatively fast removal of $Cd^{2+}$ and $Zn^{2+}$ under coexistence of $Fe^{2+}$, indicative of the different role between $Fe^{n+}$ generated from an electrode and $Fe^{2+}$ initially present in a solution. When ECG was performed with Fe electrodes until [$Fe^{n+}$] became the same as the concentration of initially present $Fe^{2+}$, [$Cd^{2+}$] and [$Zn^{2+}$] were reduced to one-tenth of the initial concentrations, suggesting the possibility of a continuous use of the medium for a subsequent MEO process.