• Title/Summary/Keyword: heavy metal distribution

Search Result 290, Processing Time 0.028 seconds

Effect of Soil Sample Pretreatment Methods on Total Heavy Metal Concentration (토양 시료조제 방법이 총중금속 농도에 미치는 영향)

  • Kim, Jung-Eun;Ji, Won Hyun
    • Journal of Soil and Groundwater Environment
    • /
    • v.27 no.4
    • /
    • pp.63-74
    • /
    • 2022
  • In analyzing heavy metals in soil samples, the standard protocol established by Korean Minstry of Environment (KSTM) requires two different pretreatments (A and B) based on soil particle size. Soil particles < 0.15 mm in diameter after sieving are directly processed into acid extraction (method A). However, if the quantity of soil particles < 0.15 mm are not enough, grinding of the particles within 0.15 mm ~ 2 mm is required (method B). Grinding is often needed for some field samples, especially for the soil samples retrieved from soil washing process that contain relatively large-sized soil grains. In this study, two soil samples with different particle size distribution were prepared and analyzed for heavy metals concentrations using two different pretreatment to investigate the effect of grinding. The results showed that heavy metal concentrations tend to increase with the increase of the fraction of small-sized particles. In comparison of the two pretreatments, pretreatment A yielded higher heavy metal concentration than pretreatment B, indicating significant influence of grinding on analytical results. This results suggest that the analytical values of heavy metals in soil samples obtained by KSTM should be taken with caution and carefully reviewed.

Subcellular Distribution of Heavy Metals in Organs of Bivalve Modiolus Modiolus Living Along a Metal Contamination Gradient

  • Podgurskaya, Olga V.;Kavun, Victor Ya.
    • Ocean Science Journal
    • /
    • v.41 no.1
    • /
    • pp.43-51
    • /
    • 2006
  • Concentration and distribution of Fe, Zn, Cu, Cd, Mn, Pb, Ni among subcellular fractions (cellular membrane structures and cytosol) and Zn, Cu, Cd among cytoplasmic proteins in the kidney and digestive gland of mussel Modiolus modiolus living along a polymetallic concentration gradient were studied. It was found in the kidney of M. modiolus from contaminated sites that the Fe percent increased in the "membrane" fraction, whereas Zn, Pb, Ni and Mn percent increased in the cytosol compared to the kidney of the control mussel. Note kidney cytosol of M. modiolus from clean and contaminated sites sequestered major parts of Cu and Cd. In the digestive gland of M. modiolus from contaminated sites Fe, Zn, Cd, Mn, Ni percent increased in the "membrane" fraction, whereas Cu, Pb percent increased in the cytosol compared to digestive gland of control mussel. Gel-filtration chromatography shows kidney of M. modiolus contains increased metallothionein-like protein levels irrespective of ambient dissolved metal concentrations. It was shown that the metal detoxification system in the kidney and digestive gland of M. modiolus was efficient under extremely high ambient metal levels. However, under complex environmental contamination in the kidney of M. modiolus, the metal detoxification capacity of metallothionein-like proteins was damaged.

Effects of pH and slow mixing conditions on heavy metal hydroxide precipitation (pH와 완속교반 조건에 따른 중금속 수산화물 화학침전 특성)

  • Park, Jong-Hun;Choi, Gyu-Jin;Kim, Sang-Hyoun
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.22 no.2
    • /
    • pp.50-56
    • /
    • 2014
  • Conventional coagulation-gravity settling processes in heavy metal removal have a problem in coagulant cost and instability of the settling efficiency. The authors investigated the effects of pH and slow mixing conditions on heavy metal hydroxide precipitation and the particle size distribution of the precipitate for a precipitation-membrane separation process. The optimum pH values for the hydroxide precipitation ranged from 9 to 10. The addition of $FeCl_3$ did not enhance the heavy metal removal. 20 min of slow mixing at 70 rpm showed the maximum heavy metal removal to meet the water quality criteria for effluent discharge. More than 99.9% of the heavy metal precipitate particles were bigger than $2{\mu}m$.

Relationship between Heavy Metal Concentrations in the Soil with the Blood and Urine of Residents around Abandoned Metal Mines (폐금속 광산지역 토양 중 중금속 농도와 주민의 혈액 및 요중 중금속 농도와의 관련성)

  • Jang, Bong-Ki;Park, Sang-Il;Kim, Nam-Soo;Jung, Kyung-Sick;Lee, Byung-Kook;Lee, Jong-Wha
    • Journal of Environmental Health Sciences
    • /
    • v.37 no.5
    • /
    • pp.348-357
    • /
    • 2011
  • Objectives: This study was conducted in order to examine the relationship between heavy metal concentrations in the soil and the level of heavy metals in the blood or urine of 216 local residents living near abandoned metal mines. Methods: Residents around abandoned metal mines were interviewed about their dietary habits, including seafood consumption, medical history, cigarette smoking, and drug history. Metal concentrations in the soil were determined by atomic absorption spectrophotometer (AA-7000, Shimadzu, Japan). Lead (Pb) and cadmium (Cd) contents in the blood or urine were analyzed by GF-AAS (AA-6800, Shimadzu). Mercury (Hg) contents in the blood were determined by means of a mercury analyzer (SP-3DS, NIC). Arsenic (As) content in the soil and urine were measured by a HG-AAS (hydride vapor generation-atomic absorption spectrophotometer). Results: The heavy metal concentrations in the soil showed a log normal distribution and the geometric means of the four villages were 8.61 mg/kg for Pb, 0.19 mg/kg for Cd, 1.81 mg/kg for As and 0.035 mg/kg for Hg. The heavy metal levels of the 216 local residents showed a regular distribution for Pb, Cd, Hg in the blood and As in the urine. The arithmetic means were 3.37 ${\mu}g$/dl for Pb, 3.07 ${\mu}g$/l for Cd and 2.32 ${\mu}g$/l for Hg, 10.41 ${\mu}g$/l for As, respectively. Conclusions: As a result of multi-variate analysis for the affecting factors on the bodily heavy metal concentrations, gender and concentration in the soil (each, p<0.01) for blood lead levels; gender and smoking status (each, p<0.01) for blood cadmium levels; gender (p<0.01) for urine arsenic levels; gender, age and concentration in the soil (p<0.01) for blood mercury levels were shown to be the affecting factors.

A Study on the Characteristics of Water Quality According to Particle Size Distribution of Sediments (하상퇴적물의 입도분포에 따른 수질특성에 관한 연구)

  • Park, Sung-Jin;Kim, Hwan-Gi
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.1
    • /
    • pp.97-105
    • /
    • 2009
  • Analysis was done on the particle size distribution of sediments flown into Saemangeum from the Mankyung and Dongjin River. The organic pollutants and heavy metal existing in the sediments were analyzed, which was further used to study the properties of pollution in the sediments according to the particle size distribution. Conclusions shown below were made from these analyses. The particle size distribution showed a big difference between the upriver areas of Mankyung and Dongjin River. Particles under $75{\mu}m$ showed to be around 85% at Dongjin River, while it showed to be around 70% at Mankyung River. This kind of distribution in particle size concluded in greatly affecting the contamination density of the sediments. From the analysis done on the soil type of sediments, deposition in Mankyung River categorized into Silty loam and Sandy loam, where Silty loam covered most of area and deposition in Dongjin River categorized into Sand, Loamy sand, Silty loam, Sandy loam. Considering the weight ratio, the density of contamination of the sediments by particle size at Dongjin and Mankyung River has been analyzed to show that organic pollutants and heavy metals occupy more than 70% of the whole contamination in the range under the particle size of $75{\mu}m$.

Distribution of Heavy Metals in Sediment Cores Collected from the Nakdong River, South Korea

  • Magalie, Ntahokaja;Lee, Jiyeong;Kang, Jihye;Kim, Jeonghoon;Park, Ho-Jin;Bae, Sang Yeol;Jeong, Seok;Kim, Young-Seog;Ryu, Jong-Sik
    • Journal of the Korean earth science society
    • /
    • v.42 no.4
    • /
    • pp.412-424
    • /
    • 2021
  • Understanding the distribution of heavy metals in sediment is necessary because labile heavy metals can partition into the water column and bioaccumulate in aquatic organisms. Here we investigated six heavy metals (Co, Cu, Mn, Ni, Pb, and Zn) in sediment cores using a five-step sequential leaching method to examine the occurrence of heavy metals in the sediment. The results showed that all elements, except Mn, are depleted in the exchangeable and carbonate fractions. However, heavy metal concentrations are much higher in the Fe-Mn oxide and organic matter fractions, especially for Cu, indicating enrichment in the organic matter fraction. Furthermore, contamination parameters (contamination factor and geoaccumulation index) indicate that Mn contamination is high, primarily derived from anthropogenic sources, presenting a potential risk to ecosystems in the Nakdong River.

A Study on Isolation of Mixed Heavy Metal-Contaminated Soil and the Waste in Railroad Workshop (철도 정비창의 폐기물과 혼합된 중금속 오염토 분리에 관한 연구)

  • Son, Woohwa;Lee, Seungho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.12
    • /
    • pp.59-66
    • /
    • 2012
  • In this study, it was sampling from heavy metal-contaminated soil with the waste in railroad workshop. And, the pollution concentration and analysis of particle-size distribution were conducted to design efficient purification process that it was aimed at high contaminated area, low contaminated area and samples containing waste foundry sand. But, it was the other signs of general soil contamination, as construction waste of waste concrete and waste wood, waste foundry sand, incinerator ash, etc is overall buried on the grounds. Thus, the common heavy metal purification technology has not decreased the pollution. However, heavy-metal contamination was reduced by magnetic separation utilizing the magnetic component of the mixed waste.

Distribution of Heavy Metal Content in Plants and Soil from a Korean Shooting Site

  • Baek, Kyung-Hwa;Kim, Hyun-Hee;Park, Jin-Sung;Bae, Bumhan;Chang, Yoon-Young;Lee, In-Sook
    • The Korean Journal of Ecology
    • /
    • v.27 no.4
    • /
    • pp.231-237
    • /
    • 2004
  • In this research we determined the levels of heavy metals in soil and metal-accumulating plants from a D military shooting site in the Kyungkido district of Korea. The data obtained may be useful in the development of methods for the efficient phytoremediation of contaminated soil. The total Cd, Cu, Pb, and Zn concentrations in the soil were found to be 1.67-5.04 mg/kg, 52.51-106.26 mg/kg, 37.24-90.32mg/kg, and 111.45-188.19mg/kg, respectively. These results show that the soil is contaminated with Cd and Cu, and this contamination is particularly severe in the case of Cd because of its high bioavailability (25-57% of the total metal in the soil is exchangeable). The high concentrations of heavy metals in the shoots of Persicaria thunbergii and Artemisia princeps var. orientalis indicate that these plants (all perennial herbs) accumulate heavy metal efficiently. Further, these plants were found to contain more Cd in its shoots (>60% of the total metal found in the plant) than any other plant; these results indicate that these native species are particularly suited to use in Cd phytoextraction.

Wet Deposition of Heavy metals in Suwon Area (수원지역 빗물의 중금속 함량 평가)

  • Jung, Goo-Bok;Lee, Jong-Sik;Kim, Won-Il;Kim, Jin-Ho;Yun, Sun-Gang
    • Korean Journal of Environmental Agriculture
    • /
    • v.26 no.2
    • /
    • pp.116-123
    • /
    • 2007
  • This experiment was conducted to investigate the distribution and burden characteristics of heavy metals in the rainwater sampled at Suwon area, in the middle part of Korea, from April 2002 to October 2003. The relationship between concentration of heavy metal and other chemical properties in the rainwater was also evaluated. Chemical properties in the rainwater were various differences with raining periods and years. It appeared that a weighted average pH of rainwater was ranged from 4.7 to 5.5. Heavy metal concentrations in the rainwater were ranked as Zn>Pb>Cu>Ni>Cr>As>Cd. As compared with heavy metal concentrations of rainwater in 2002, Cd, Cu and As were higher than other element in 2003. There were positive correlation between major ionic components, such as Ca, Mg, and K, and heavy metal concentrations of rainwater, and As, CU, Cu, Zn and Ni were relatively higher relationship than Pb and Cr in respective to correlation coefficient. For heavy metal distribution of rainwater, the order of average enrichment factors was Cd>Pb>AS>Cu>Zn>Ni>Cr, and these were relatively higher than the natural component such as Fe, Mg and Ca. The monthly enrichment factors were relatively high in the spring (from April to May) at Suwon. The monthly amount of heavy metal precipitation was high in the rainy season from June to August because of great influence of rainfall.

Heavy Metal Pollution and Management Direction of Small Arms Firing Ranges (소화기 사격장의 중금속 오염 특성 및 관리방향 제시)

  • Kim, Hong-Hyun;Jeong, Sangjo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.5
    • /
    • pp.724-734
    • /
    • 2019
  • This study selected a representative small arm firing range and analyzed the distribution of heavy metal pollutants such as Pb, Cu, Zn, etc. For this the concentrations of heavy metals in soils, roots and leaves of plants, and water of the small arm firing range were measured. The concentrations of heavy metals in the effluent were also checked during precipitation. The concentration of lead in the samples collected from the top soil(0-5 cm) and sub soil(5-50 cm) near the target in the small arm firing range exceeded the concern level of the Soil Environment Conservation Act of Korea, but not in other soil samples. Plants that grow in soil heavily contaminated with lead showed a high lead concentration, especially in roots. However, the concentration of lead in effluent from the small arm firing range was less than 0.02 ppm. The concentration of copper and zinc in the small arm firing range did not surpass the concern level of the Soil Environment Conservation Act of Korea. Through this study more accurate information on the distribution of heavy metal pollution in the soil of the small arm firing range was obtained. Based on this research, we can conclude that some facility improvements can reduce the spreading of pollutants in the currently used small arm firing range and contribute to the design and operation of advanced small arm firing ranges.