• Title/Summary/Keyword: heavy metal Pb

Search Result 1,396, Processing Time 0.028 seconds

Determination of Bioconcentration Factor of Heavy Metal (loid)s in Rice Grown on Soils Vulnerable to Heavy Metal (loid)s Contamination

  • Lee, Seul;Kang, Dae-Won;Yoo, Ji-Hyock;Park, Sang-Won;Oh, Kyeong-Seok;Lee, Jin-Ho;Cho, Il Kyu;Moon, Byeong-Churl;Kim, Won-Il
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.50 no.2
    • /
    • pp.106-114
    • /
    • 2017
  • There is an increasing concern over heavy metal(loid) contamination of soil in agricultural areas including paddy soils. This study was conducted to determine the bioconcentration factor (BCF) for heavy metal(loid)s to brown rice grown in paddy soils vulnerable to heavy metal(loid)s contamination, for the quantitative health risk assessment to the residents living nearby the metal contaminated regions. The samples were collected from 98 sites nationwide in the year 2015. The mean and range BCF values of As, Cd, Cu, Ni, Pb, and Zn in brown rice were 0.027 (0.001 ~ 0.224), 0.143 (0.001 ~ 2.434), 0.165 (0.039 ~ 0.819), 0.028 (0.005 ~ 0.187), 0.006 (0.001 ~ 0.048), and 0.355 (0.113 ~ 1.263), respectively, with Zn showing the highest. Even though the relationship between heavy metal(loid) contents in the vulnerable soils and metal contents in brown rice collected at the same fields was not significantly correlated, the relationship between log contents of heavy metal(loid)s in the vulnerable soils and BCF of brown rice wes significantly correlated with As, Cd, Cu, and Zn in rice. In conclusion, soil environmental risk assessment for crop uptake should consider the bioconcentration factor calculated using both the initial and vulnerable heavy metal(loid) contents in the required soil and the crop cultivated in the same fields.

Application of Principle in Metal-Ligand Complexation to Remove Heavy Metals : Kind and Concentration Effects of Organic Ligands (금속-Ligand 착염형성에 의한 중금속(重金屬) 제거(除去) 방법(方法)에 관한 연구(硏究);유기 Ligand의 종류와 농도(濃度) 영향(影響))

  • Yang, Jae-E;Shin, Yong-Keon;Kim, Jeong-Je;Park, Jeong
    • Korean Journal of Environmental Agriculture
    • /
    • v.11 no.3
    • /
    • pp.243-252
    • /
    • 1992
  • This research was conducted to investigate the influence of kind and concentration of organic ligands such as humic (HA) or fulvic acid (FA) on the removal of Cu or Pb from the aqueous solution employing the principles in metal-ligand complexation. Increasing HA concentration enhanced the efficiency of Cu or Pb removal, but there existed upper critical concentrations capable of forming maximum HA-metal complex. which ranged 53-289 and 42-315mg/L for Cu and Pb, respectively. At these concentrations. efficiency of removal was 70 to 95 % for Pb, but 13 to 65 % for Cu. Amounts of Cu and Pb which complexed with 100mg HA were estimated to be 7.5 and 34.1mg, respectively. FA-metal complex forming reactions were fitted significantly to the empirical models of Freundlich for Cu and Langmuir for Pb. Fulvic acid precipitated nearly 100% of Pb in solution, but formed precipitates with Cu in only 13 to 29%. Comparing organic ligands. HA had a higher removal efficiency for Cu but FA had such for Pb. Metalligand complex formation was differed from kinds and concentrations of corresponding ligands and metals. Results demonstrated that this principle has a strong potential to be employed for treating heavy metals in aqueous solution.

  • PDF

Characterization of Heavy Metal Pollution in Sediments of Major Reservoirs in South Korea (우리나라 주요 호소의 퇴적물 내 중금속 오염도에 따른 특성 분석)

  • Yun Sang Jeong;Dae-Seong Lee;Da-Yeong Lee;Ihn-Sil Kwak;Young Seuk Park
    • Korean Journal of Ecology and Environment
    • /
    • v.55 no.2
    • /
    • pp.175-183
    • /
    • 2022
  • In this study, 46 reservoirs in South Korea were characterized based on heavy metal concentration in sediments. We analyzed the relationship between heavy metal concentrations, physicochemical water quality and hydromorphological factors in each reservoir. Study reservoirs were classified into five groups of reservoirs, by hierarchical cluster analysis based on the similarities of heavy metal concentration. Group 1 had the most severe sediment heavy metal contamination among the groups, whereas Groups 2 and 3 showed low levels of heavy metal contamination. Group 4 displayed high value of Ni, and Group 5 showed high contamination of Pb, Cu, Cr, Ni, and Hg. Groups 1 and 5, which had high concentration of heavy metals in sediments, showed a high density of mines in the catchment of reservoirs. Heavy metal concentration was high in reservoirs with large capacity or the ones located at higher elevation, and also highly related with number of mines in the catchment of reservoir. This study can contribute to the systematic management of sediment heavy metals in reservoirs.

The Heavy Metal Adsorption Properties of Hydroxyapatite Powders Synthesized by Precipitation Reaction Method and Its Applicability for the Removal Agents of Noxious Metallic Ions in Waste Water (침전반응법으로 합성한 수산아파타이트 분말의 중금속 흡착 특성 및 폐수중의 유해 금속 제거제로서의 유용성)

  • Lee, Mu Seong;Na, Choon Ki;Lee, Mi Suk;Kim, Oak Bae;Kim, Moon Young
    • Economic and Environmental Geology
    • /
    • v.28 no.3
    • /
    • pp.231-241
    • /
    • 1995
  • It is well known that hydroxyapatite [$Ca_{10}(PO_4)_6(OH)_2$] have an exchangeability for various heavy metal ions in aqueous solution. To evalute the feasibility of employing the synthetic hydroxyapatites as an eliminatable exchanger for environmentally noxious caions in waste water, the adsorption properties, the removal capacities and the selectivity of the apatites for various cations were investigated in more detailed. The heavy metal cations have been exchanged in calcium part of hydroxyapatite. The order of the degree of amount exchanged of the investigated cations is $Pb^{2+}>Cd^{2+}>Zn^{2+}>Ba^{2+}$. The molar ratios between released $Cd^{2+}$ ions and remeved divalent metal cations in the reacted solution with hydroxyapatite are roughly close to an integer 1.0, suggesting that an ion-exchange reaction could have played a major role in the removal of heavy metals rather then an adsorption effect. The exchangeability of the hydroxyapatite powder of Ca/P molar ratio 1.67, which have specipic surface area of $104.5m^2g^{-1}$, appeared to be better then $237.6{\mu}g$ per g for $Pb^{2+}$ ions. The removal capacity of the heavy metal ions varies directly as particle size of hydroxyapatites. All evidences obtained indicate that the synthesized hydroxyapatite powders by precipitation reaction method can be employed as an effective cation exchanger for eliminating noxious ions in waste water even in some improvemental.

  • PDF

Detection of Heavy Metal Ions by the Cuvette Assay Measuring Urease Inhibitory Activity (Urease 저해활성 측정 cuvette assay에 의한 중금속 이온 검출)

  • Kim, Dong-Kyung;Park, Kyung-Rim;Kang, Eun-Mi;Park, In-Seon;Kim, Nam-Soo
    • Applied Biological Chemistry
    • /
    • v.46 no.2
    • /
    • pp.74-78
    • /
    • 2003
  • To determine the urease inhibitory activity of various heavy metal ions, a photometric cuvette assay for measuring ammonia production was developed. In this assay, the absorbance values at 630 m were linearly increased according to the ammonia concentrations up to 3.0 mg/l (r : 0.998). The urease inhibitions upon addition of a single species of heavy metal ions were in the decreasing order of Hg(II) > Pb(II) > Cu(II) > Cd(II) > Zn(II) ions. As expected, the urease inhibitions at a fixed concentration of a single species and at varying concentrations of other species occurred in the additive way. The above results show the applicability of the current method to the selective detection on Hg(II) ions as well as the screening of heavy metal ions possibly present at various samples.

A Study on the Heavy Metal Contamination of paddy Soil in the Vicinity of the Seosung Pb-Zn Mine (서성 연-아연광산 주변 농경지 토양의 중금속 오염 연구)

  • 황은하;위수민;이평구;최상훈
    • Journal of Korea Soil Environment Society
    • /
    • v.5 no.2
    • /
    • pp.67-85
    • /
    • 2000
  • Fifty seven soil samples were collected from the paddy soil filled with tailings in the vicinity of the Seosung Pb-Zn mine. Those samples were analyzed for As, Cd, Co, Cr, Cu, Pb, and Zn in order to investigate heavy metal pollution levels in the paddy soil. Analyses of the soil samples were carried out using Inductively Coupled Plasma Atomic Emission Spectrometry(ICP-AES) . Paddy soils show pH range from 6.55 to 8.26. X-ray diffraction analyses of the paddy soil indicate that the soils consist predominantly ankerite, siderite, quartz, mica, and clay minerals with minor amounts of amphibole and chlorite. The mineral composition of the waste rocks consists of massive galena, sphalerite, and minor amounts of pyrite, arsenopyrite, chalcopyrite, calcite, siderite, Pb-sulfosalt, and marcasite. The paddy soils were significantly contaminated by heavy metals(average concentrations, As: 334.4 ppm, Cd: 37.6 ppm, Co: 15.7 ppm, Cu: 214.1 ppm, Pb: 4,612 ppm, and Zn: 4,468 ppm).

  • PDF

Sediment Quality Assessment for Heavy Metals in Streams Around the Shihwa Lake (시화호 유역 하천 퇴적물에서의 중금속 오염도 평가에 관한 연구)

  • Jeong, Hyeryeong;Kim, Kyung-Tae;Kim, Eun-Soo;Ra, Kongtae;Lee, Seung-Yong
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.19 no.1
    • /
    • pp.25-36
    • /
    • 2016
  • Heavy metals in the stream sediments around Shihwa Lake were studied not only to investigate the characteristics of spacio-temporal distribution but also to assess the pollution degree and ecological risk using various pollution indices. Among metals, Zn had the highest values (1,311 mg/kg) and Hg showed the lowest value (0.261 mg/kg). The order of mean concentrations (mg/kg) of metals was Zn>Cu>Pb>Cr>Ni>Co>As>Cd>Hg in stream sediments around Shihwa Lake. Metal concentrations showed different pollution pattern with industrial region, indicating that these metals originated from different sources and industrial region had higher metal concentration than rural/urban regions. The results of geoaccumulation index (Igeo) showed that the stream sediments were significantly polluted with Cd, Cu, Zn and Pb, indicating moderately to highly polluted by these metals. According to PLI consideration, industrial region was more seriously polluted by metals whereas an rural/urban region was not polluted. About 85% of sampling site for Cr, Ni, Cu, Zn and Pb from industrial regions were exceeded the PEL values. The mPELQ and SQI values derived from PEL of industrial region were classified as 'highly toxic' and 'very poor' and metal pollution level tend to be worse in wet season. This indicates that the industrial activities and stromwater runoff represents an important sources of heavy metals around Shihwa Lake.

Characteristics of Heavy Metal Removal from Aqueous Solutions using Leather Industry by-products (피혁산업 부산물에 의한 용존 중금속 제거 특성)

  • Kim, Keun-Han;Lee, Nam-Hee;Paik, In-Kyu;Park, Jae-Hyung;Yang, Jae-Kyu
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.5
    • /
    • pp.417-426
    • /
    • 2010
  • In this study, ten different bio-adsorbents were prepared by immobilization of vegetable tannins such as mimosa(Catechol Tannin) and chestnut(Pyrogallol Tannin) on the collagen matrix which was derived from during leather manufacturing processing. Removal efficiency of Cu(II), Cd(II), Zn(II), Pb(II), Cr(III) by each bio-adsorbent in synthetic wastewater was evaluated by a laboratory-scale batch reactor at different reaction conditions. When mimosa was used as a vegetable tannin, the penetration efficiency of mimosa into the inner bundle of fiber depended on the dose of the naphthalene condensated penetrant; 3% ${\geq}$ 1.5% > 0%. For all bio-adsorbents, removal of heavy metal ions was not observed below pH 3.0 but was rapidly increased between pH 3.0 and 6.0, showing near complete removal of all heavy metal ions except Zn(II) above pH 6.0. Removal of Cr(III) was quite similar for all bio-adsorbents while removal of Cu(II), Zn(II) and Pb(II) was higher by bio-adsorbents immobilized with chestnut than that by mimosa. Adsorption of Pb(II) and Cu(II) by S10 bio-adsorbent was little affected by the presence of monovalent and divalent electrolytes as well as variation of 1000 times ionic concentration with $NaNO_3$.

Comparison of Heavy Metal Adsorption by Manganese Oxide-Coated Activated Carbon according to Manufacture Method (활성탄-망간 산화물 합성소재의 제조방법에 따른 중금속 흡착특성 비교)

  • Lee, Seul Ji;Lee, Myoung-Eun;Chung, Jae-Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.1
    • /
    • pp.7-12
    • /
    • 2014
  • The adsorption characteristics of Pb(II) and Cu(II) by the manganese oxide-coated activated carbon (MOAC) were investigated by series of batch experiments. MOAC was prepared by three types of manufacturing methods such as chemical precipitation method (CP), hydrothermal method (HT) and supercritical method (SC). Pseudo-second-order and Langmuir models adequately described kinetics and isotherm of Pb(II) and Cu(II) adsorption on the experimented adsorbents. These results indicated that heavy metal ions were chemically adsorbed onto uniform monolayered adsorption sites. The coating of manganese oxide enhanced the adsorption capacities of AC. And adsorption capacities of Pb(II) and Cu(II) were significantly affected by the manufacturing method of MOAC. The highest adsorption performance was obtained by using SC, followed by HT and CP, which is caused from high uniformity and amount of manganese oxide coated onto AC induced by high temperature and pressure. These results show that MOAC can be used as an effective adsorbent to remediate heavy metal contaminated environment.

Separation and Recovery of Heavy Metal Ion using Liquid Membrane (액체막법에 의한 중금속이온의 분리 및 회수)

  • Jo, Mun Hwan;Jeong, Hak Jin;Lee, Sang In;Kim, Jin Ho;Kim, Si Jung
    • Journal of the Korean Chemical Society
    • /
    • v.38 no.2
    • /
    • pp.122-128
    • /
    • 1994
  • Macrocyclic ligand has been known to selectively bind with metal ions so that ability applied for the transport of metal ions across the emulsion liquid membrane in this study. The metal ions are transproted from the source phase to the receiving phase by the carrier of the organic phase. Several factors involved in the transport of metal ions acrose the emulsion membrane we reported here and these factors provided the informations for the selective seperation of some metal ion. Stability constants for cation-macrocyclic ligand and metal ion-anion receiving phase interaction are examined as parameters for the prediction of metal ion transport selectivities. $Pb^{2+}$ was transported higher rates than the other metal ions in the mixture solution. The interaction of metal ion to anion in receiving phase is important. $S_2O_3^{2-}$- in replacement of $NO_3^-$ in the receiving phase enhances the transport of $Pb^{2-}$since $Pb^{2-}-S_2O_3^{2-}$interaction is greater than $Pb^{2+}-NO_3^-$ interaction.

  • PDF