• 제목/요약/키워드: heavy metal Pb

검색결과 1,392건 처리시간 0.032초

키틴에 의한 중금속 Cd(II), Pb(II)이온의 흡착 및 회수에 관한 연구 (Study on Adsorption and Recovery of Heavy Metal Ions, Cd(II) and Pb(II), by Chitin)

  • 김은경;조영구;권영두;박미아;김한수;박광하
    • 분석과학
    • /
    • 제15권2호
    • /
    • pp.163-171
    • /
    • 2002
  • 수산가공 폐기물로 버려지는 게 껍질로부터 chitin을 추출하여 중금속 흡착제로 이용하였으며, 이 흡착제에 대해 Cd(II) 및 Pb(II) 이온의 흡착특성을 연구하였다. Chitin에 대한 Cd(II) 및 Pb(II) 이온의 흡착속도는 반응시간 2분경에 최대흡착량에 도달하였으며, 중금속 흡착에 미치는 pH의 영향은 두 이온 모두 pH 7.0>10.5>3.5순임을 알 수 있었다. Chitin에 대한 흡착률은 Cd(II)이온이 21${\sim}$99%이며, Pb(II)이온이 24${\sim}$95%이다. Cd(II)이온의 회수율은 22${\sim}$53%이고, Pb(II)이온의 회수율은 22${\sim}$73%로 나타났다. 이들 중금속 이온의 흡착양상은 Freundlich 흡착등온식에 비교적 잘 적용되었다.

제주 송이(Scoria)를 이용한 중금속 흡착에 관한 연구 (Study on Adsorption of Heavy Metal tons by Cheju Scoria)

  • 이민규;서근학
    • 한국환경과학회지
    • /
    • 제5권2호
    • /
    • pp.195-201
    • /
    • 1996
  • This study was conducted for the efficient utilization of a scoria, which is abundantly found in Cheju island, as adsorbent and the scoria was examined for its performance in clarification of adsorption of heavy metal ions. The order in heavy metal ions adsorbed on scoria was; Pb+>Cd^{2+}$>Cu^{2+}$>Ag^+$>Co^{2+}$>Zn^{2+}$>Cr^{3+}$>Cr^{6+}$. This tendency was relatively consistent with the decreasing order of radius of hydrated metal ion. Also, the smaller scoria size and the larger amounts of scoria showed higher removal efficiency for heavy metal ions. The same scoria size showed more effective removal efficiency for heavy metal ions at lower initial concentration than at higher initial concentration. The adsorption abilities of original scoria and chemically treated scoria were compared. Adsorption isotherm of scoria was generally obeyed to Freundlich formula than langmuir formula and Freundlich constant, than was obtained in the range of 0.2~0.4.

  • PDF

천연광물의 양극성 표면개질을 이용한 상수원수 중 중금속제거 특성 (Heavy Metal Removal from Drinking Water using Bipolar Surface Modified Natural Mineral Adsorbents)

  • 김남열;김영희
    • 한국환경보건학회지
    • /
    • 제45권6호
    • /
    • pp.561-568
    • /
    • 2019
  • Objectives: The most commonly detected heavy metals in rocks and soils, including Pb, Cd, Cu, Fe, Mn and As, are representative pollutants discharged from abandoned mines and have been listed as potential sources of contamination in drinking water. This study focused on increasing the removal efficiency of heavy metals from drinking water resources by surface modification of natural adsorbents to reduce potential health risks. Methods: Iron oxide coating and graft polymerization with zeolites and talc was conducted for bipolar surface modification to increase the combining capacity of heavy metals for their removal from water. The removal efficiency of heavy metals was measured before and after the surface modification. Results: The removal efficiency of Pb, Cu, and Cd by surface modified zeolite showed 100, 92, and 61.5%, respectively, increases compared to 64, 64, and 38% for non-modified zeolite. This implies that bipolar surface modified natural adsorbents have a good potential use in heavy metal removal. The more interesting finding is the removal increase for As, which has both cation and anion characteristics showing 27% removal efficiency where as non-modified zeolite showed only 2% removal. Conclusions: Zeolite is one of the most widely used adsorptive materials in water treatment processes and bipolar surface modification of zeolite increases its applicability in the removal of heavy metals, especially As.

Phytoextraction of Heavy Metals Induced by Bioaugmentation of a Phosphate Solubilizing Bacterium

  • Arunakumara, K.K.I.U.;Walpola, Buddhi Charana;Song, Jun-Seob;Shin, Min-Jung;Lee, Chan-Jung;Yoon, Min-Ho
    • 한국환경농학회지
    • /
    • 제33권3호
    • /
    • pp.220-230
    • /
    • 2014
  • BACKGROUND: Excessive metals in the soil have become one of the most significant environmental problems. Phytoremediation has received considerable attention as a method for restoring the contaminated soils. The microbes having remarkable metal tolerance and plant growth-promoting abilities could also play a significant role in remediation of metal-contaminated soils, because bioaugmentation with such microbes could promote phytoextraction of metals. Therefore, the present study was focused on evaluating the phytoextraction of heavy metals (Co, Pb and Zn) in Helianthus annuus (sunflower) induced by bioaugmentation of a phosphate solubilizing bacterium. METHODS AND RESULTS: A phosphate solubilizing bacterium was isolated from metal-contaminated soils based on the greater halo size (>3 mm) with solid NBRIP agar medium containing 10 g glucose, 5 g $Ca_3(PO_4)_2$, 5 g $MgCl_2{\cdot}6H_2O$, 0.25 g $MgSO_4.7H_2O$, 0.2 g KCl, 0.1 g $(NH_4)_2SO_4$ in 1 L distilled water. Isolated bacterial strain was assessed for their resistance to heavy metals; $CoCl_2.6H_2O$, $2PbCO_3.Pb(OH)_2$, and $ZnCl_2$ at various concentrations ranging from $100-400{\mu}g/mL$ (Co, Pb and Zn) using the agar dilution method. A pot experiment was conducted with aqueous solutions of different heavy metals (Co, Pb and Zn) to assess the effect of bacterial strain on growth and metal uptake by Helianthus annuus (sunflower). The impact of bacterial inoculation on the mobility of metals in soil was investigated under laboratory conditions with 50 mL scaled polypropylene centrifuge tubes. The metal contents in the filtrate of plant extracts were determined using an atomic absorption spectrophotometer (Perkinelmer, Aanalyst 800, USA). CONCLUSION: Inoculation with Enterobacter ludwigii PSB 28 resulted in increased shoot and root biomass and enhanced accumulation of Co, Pb and Zn in Helianthus annuus plants. The strain was found to be capable of promoting metal translocation from the roots to the shoots of H. annuus. Therefore, Enterobacter ludwigii PSB 28 could be identified as an effective promoter of phytoextraction of Co, Pb and Zn from metal-contaminated soils.

모자반(Sargassum thunbergii)을 이용한 Pb 및 Cr 제거 (Biosorption of Pb and Cr by Using Sargassum thunbergii)

  • 조문철;안갑환;서근학
    • 한국수산과학회지
    • /
    • 제38권3호
    • /
    • pp.153-157
    • /
    • 2005
  • The biosorption of Pb and Cr by Sargassum thunbergii was investigated in a batch conditions. The Pb and Cr uptake capacity of Sargassum thunbergii was 232.5 mg Pb/g biomass and 91.6 mg Cr/g biomass, respectively. An adsorption equilibria was reached within about 0.5 hr for both the Pb and the Cr. The adsorption parameters for both the Pb and the Cr were determined according to the Langmuir and Freundlich model. With increasing pH values, more negative sites are becoming available for the adsorption of Pb and Cr. The selectivity of mixture solution showed an uptake order of Pb>Cu>Cr>Cd. Pb and Cr adsorbed by S. thunbergii could be recovered ken 0.1 M HCl, 0.1 M $HNO_3$ and 0.1M EDTA by a desorption process, and the efficiency of Pb desorption was above $95.8\%$, whereas the efficiency of the Cr desorption was below $50.7\%$.

Carboxylated alginic acid bead를 이용한 중금속 제거에 대한 염료폐수의 영향 연구 (Effect of Dye Wastewater on Heavy Metal Removal using Carboxylated Alginic Acid Bead)

  • 전충
    • 유기물자원화
    • /
    • 제17권4호
    • /
    • pp.74-80
    • /
    • 2009
  • Carboxylated alginic acid bead를 이용한 중금속 제거에 관한 염색폐수의 영향에 대해 연구를 수행하였다. Carboxylated alginic acid bead를 담체로 사용하였을 때 때 납과 구리이온의 흡착에 미치는 염색폐수의 영향은 매우 작았다. 또한, 납 이온이 염색폐수와 같이 섞여 있을 때 흡착공정은 거의 2-3 시간 내에 이루어졌으며 50ppm의 납 이온은 0.3g의 담체만으로 대부분 제거 되었다. 이와 같은 결과는 Carboxylated alginic acid bead가 염색폐수 내에 존재하는 중금속 이온의 제거에 대해서 효과적인 흡착제임을 의미한다.

  • PDF

산업폐기물 중의 유해중금속의 환경친화적 안정화 처리(I) (Environmentally Adaptive Stabilization of the Hazardous Heavy Metal Waste by Cementious Materials(I))

  • 원종한;안태호;최광휘;최상흘;손진군;심광보
    • 한국세라믹학회지
    • /
    • 제39권7호
    • /
    • pp.680-686
    • /
    • 2002
  • 각 시멘트 구성 광물별로 중금속의 고정/안정화 메커니즘과 수화거동을 검토하였다. $C_3$S수화 시 Pb는 불용성화합물인 Ca[Pb(OH)$_3$.$H_2O$]$_2$를, Cr은 CaCr $O_4$$H_2O$를 생성하였으며, 초기 7일까지는 전체적으로 중금속이 첨가되어진 경우 수화가 늦어지는 경향을 보이고 있었다. $C_3$A와 $C_4$ $A_3$ $S^{S}$수화 시 Pb, Cr 이온이 ettringite 또는 monosulfate에 의한 수화물에 치환에 의한 고정/안정화되고 있다. 수화물에서 Pb, Cr, Zn등 유해중금속의 용출은 극미하였으며 이는 수화물에 중금속이 고정/안정화되었음을 알 수 있다. 슬래그 혼합 시멘트를 이용한 산업 폐기물 STS, BF, COREX 슬러지 함유 중금속의 고정화/안정화를 검토하였다 시멘트와 폐슬러지를 3 : 7의 비율로 혼합 고화 처리한 결과 유해 중금속의 용출은 극미하였으며, 효과적으로 고정/안정화됨을 확인할 수 있었다.다.

치커리에 의한 중금속 Cu(II), Pb(II), Cd(II)의 흡착능 (Adsorption of heavy metals Cu(II), Pb(II) and Cd(II) on Cichory)

  • 박문숙;양미경
    • 환경위생공학
    • /
    • 제12권1호
    • /
    • pp.97-100
    • /
    • 1997
  • The adsorption of the Chchory particles on Cu(II), Pb(II) and Cd(II) ions were examined by measurements of the adsorption percentage under various condition of temperature, pH, times, heavy metal concentration. Each of 100ml sample solution of Cu(II), Pb(II) and Cd(II) ions mixed with 2g of the Cichory under stirring in shaking water bath for minutes. The solutions were then filtered and pretreatmented according to water pollution official test methods. The concentrations of Cu(II), Pb(II) and Cd(II) ions in the solution were determined by the atomic adsorption spectrophotometer. As a results, the most effective pH of the adsorption of Cu(II), Pb(II) and Cd(II) was 9. With increasing the concentration of heavy metals the amount of adsorption on Cichory was increased. The adsorption equilibrium of Pb(II) and Cd(II) ions were reached to equilibrium by shaking for about 40 minutes. The absorptivities were 85%, 75% respectively.

  • PDF

전탕 전과 후의 중금속, 잔류농약 및 잔류이산화황의 농도변화 - 감기약을 중심으로 - (Concentration of Heavy Metals, Residual Pesticides and Sulfur Dioxide of before/after a Decoction)

  • 서창섭;황대선;이준경;하혜경;천진미;엄영란;장설;신현규
    • 대한본초학회지
    • /
    • 제23권4호
    • /
    • pp.51-58
    • /
    • 2008
  • Objectives: To compare the contents of heavy metals, residual pesticides and sulfur dioxide before/after a decoction. Methods: The heavy metal contents before/after a decoction were measured by Inductively Coupled Plasma Atomic Emission Spectrometer(ICP-AES) and mercury analyzer. In order to analyze pesticides in 5 samples we used simultaneous multi-residue analysis of pesticides by GC/ECD, which was followed by GC/MSD analysis to confirm the identity of the detected pesticide in each sample. In addition, the contents of sulfur dioxide($SO_2$) were performed by Monier-Williams distillation method. Results: 1. The mean values of heavy metal contents(mg/kg) for the samples were as follows: Galgeun-tang(before decoction-Pb; 0.793, Cd; 0.133, As; 0.016 and Hg; 0.005, after decoction-Pb; 0.033, Cd; 0.004, As; 0.002 and Hg; not detected), Gumiganghwal-tang(before decoction-Pb; 0.934, Cd; 0.197, As; 0.046 and Hg; 0.006, after decoction-Pb; 0.062, Cd; 0.007, As; 0.004 and Hg; 0.0001), Sosiho-tang(before decoction-Pb; 0.891, Cd; 0.134, As; 0.091 and Hg; 0.014, after decoction-Pb; 0.036, Cd; 0.002, As; 0.004 and Hg; not detected), Ojuck-san(before decoction-Pb; 0.907, Cd; 0.136, As; 0.084 and Hg; 0.007, after decoction-Pb; 0.074, Cd; 0.007, As; 0.011 and Hg; 0.0005) and Samsoeum(before decoction-Pb; 1.234, Cd; 0.154, As; 0.016 and Hg; 0.007, after decoction-Pb; 0.094, Cd; 0.006, As; 0.002 and Hg; 0.001). 2. Contents(mg/kg) of residual pesticides before/after a decoction in all samples were not detected. 3. Contents(mg/kg) of sulfur dioxide($SO_2$) before a decoction in Galgeun-tang, Gumiganghwal-tang, Sosiho-tang, Ojuck-san and Samsoeum exhibited 1.2, 3.4, 11.1, 12.0 and 5.7, respectively. However, contents of sulfur dioxide after a decoction in all samples were not detected. Conclusions: These results will be used to establish a criterion of heavy metals, residual pesticides and sulfur dioxide.

  • PDF

새우껍질로부터 얻어진 키토산을 이용한 중금속 흡착에 관한 연구 (A Study on the Adsorption of Heavy Metals by Chitosan Obtained from Shrimp Shell)

  • 차월석;김종수;조배식;김종균
    • 공업화학
    • /
    • 제9권4호
    • /
    • pp.504-508
    • /
    • 1998
  • 새우껍질로부터 얻어진 키토산을 이용하여 중금속 흡착상태를 알아 보기 위해 $Fe^{2+}$, $Cu^{2+}$, $Mn^{2+}$, $Zn^{2+}$, $Ni^{2+}$, $Pb^{2+}$, $Cd^{2+}$, $Cr^{6+}$ 등의 중금속을 pH변화, 최적 pH에서 시간변화 시킨 후 원자 흡광 광도계를 분석한 결과는 8개 중금속들의 최적 흡착율에 대한 pH는 7.0~9.0 범위이었으며, 최대의 흡착시간은 $Fe^{2+}$가 15분, $Cu^{2+}$, $Mn^{2+}$, $Zn^{2+}$, $Ni^{2+}$, $Pb^{2+}$, $Cd^{2+}$, $Cr^{6+}$가 25분임을 알 수 있었다. 또한 키토산에 의한 중금속들의 흡착된 량의 순서는 $Fe^{2+}>Cu^{2+}>Pb^{2+}>Zn^{2+}>Cd^{2+}>Mn^{2+}>Ni^{2+}>Cr^{6+}$순으로 나타났다.

  • PDF