• Title/Summary/Keyword: heavy alloy

Search Result 166, Processing Time 0.023 seconds

Effect of Ni and Mo on Mechanical Properties of Submerged Arc Welds with Flexible Glasswool Backing (FGB SAW 용접부 물성에 미치는 Ni과 Mo의 영향에 관한 연구)

  • Jee, C.H.;Choi, J.T.;Kim, D.J.
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.55-55
    • /
    • 2009
  • FGB(Flexible Glasswool Backing) Submerged Arc Welding has been one of the main welding processes for one side butt welding in shipbuilding industries, which can efficiently improve the welding productivity by the addition of a supplementary filler metal into the molten weld pool. As recent ships have become larger in size, the application of high tensile and higher grade of steels has been continuously increased. Single pass FGB SA welding process accompanies such a high heat input when welding thick plates that the mechanical properties of weld metal can be dramatically degraded. This study has been performed in order to obtain high toughness and tensile properties of high heat input FGB SA welds, and to evaluate the effect of alloy elements on their mechanical properties. To complete welding 25mm-thick EH36 grade steel plate by single pass, 1.2mm diameter and 1.0mm long cut wires has been distributed in the groove before welding, and three different test coupons have been made using C-1.5%Mn, C-1.8%Mn-0.5%Mo, and C-1.4%Mn-1.7%Ni cut wires to investigate the influence of nickel(Ni) and molybdenum(Mo) on the mechanical properties of welds. Test results showed that the addition of Ni and Mo effectively promotes the formation of Acicular Ferrite(AF), while significantly reducing the amount of Grain Boundary Ferrite(GBF) in weld metal microstructures, which resulted in a beneficial effect on low temperature impact toughness and strength.

  • PDF

Design of Pretreatment Process of Lead Frame Etching Wastes Using Reduction-Oxidation Method (환원-산화법을 이용한 리드프레임 에칭폐액의 정제과정 설계)

  • Lee, Seung Bum;Jeon, Gil Song;Jung, Rae Yoon;Hong, In Kwon
    • Applied Chemistry for Engineering
    • /
    • v.27 no.1
    • /
    • pp.21-25
    • /
    • 2016
  • When copper alloy is used in etching process for the production of lead frame, the high concentration of heavy metals, such as iron, nickel and zinc may be included in the etching waste. Those etching waste is classified as a specified one. Therefore a customized design was designed for the purification process of the lead frame etching waste liquid containing high concentrations of heavy metals for the production of an electroplating copper(II) oxide. Since the lead frame etching waste solution contains highly concentrated heavy metal species, an ion exchange method is difficult to remove all heavy metals. In this study, a copper(I) chloride was manufactured by using water solubility difference related to the reduction-oxidation method followed by the reunion of copper(II) chloride using sodium sulfate as an oxidant. The hydrazine was chosen as a reducing agent. The optimum added amount was 1.4 mol per 1.0 mol of copper. In the case of removal of heavy metals by using the combination of reduction-oxidation and ion exchange resin methods, 4.3 ppm of $Fe^{3+}$, 2.4 ppm of $Ni^{2+}$ and 0.78 ppm of $Zn^{2+}$ can be reused as raw materials for electroplating copper(II) oxide when repeated three times.

Synthesis of Alumina-Silica ceramic material(II) (알루미나-실리카계 세라믹복합체 제조 연구(II))

  • Kim Cheol-soo;Lee Hyung-Bock
    • Composites Research
    • /
    • v.18 no.6
    • /
    • pp.48-53
    • /
    • 2005
  • In this study, to improve the ballistic efficiency of very brilliant alumina-silica armor material, forming press and sintering temperature were changed. After physical/mechanical measurement, we measured ballistic properties about KE(Kinetic Energy, L/D=10.7, tungsten heavy alloy) and HEAT(High Explosive Anti-Tank, K215) projectiles and analyzed them. As a result, in $1235^{\circ}C$, it appeared the highest ballistic efficiency about HEAT and it improved $22\%$ ballistic efficiency, better than invented alumina-silica armor material before.

A Study on the Sterilization of Sea Water using Redox Reaction (Redox 반응을 이용한 해수 살균에 대한 연구)

  • Song, Ju-Yeong;Kim, Jong-Hwa
    • Journal of the Korean Applied Science and Technology
    • /
    • v.28 no.1
    • /
    • pp.29-34
    • /
    • 2011
  • The sterilization of strain and algae in sea water was studied to see the possibility to apply the redox reaction of metal alloy to meet the international marine organization(IMO) regulation, which was to regulate deballasting concentration of strain and algae above 99% of sterilization. Two different kinds of brass were heat treated at different temperature and cooled rapidly to conserve the specific character of ${\beta}$ brass. Untreated Muntz metal showed the best result of antimicrobial rate in sea water, and 7:3 brass showed similar result to Muntz metal. Heavy metal elution rate was inversely proportional to the sterilization capability.

Joining Behavior of Ceramics to Metal by Using Lead-bismate Heavy Metal Glass Frit (중금속 창연산화납계 저온유리 분말을 이용한 세라믹스/금속의 접합거동)

  • Choi, Jin Sam
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.4
    • /
    • pp.312-316
    • /
    • 2014
  • The joining behavior of forsterite ceramics to SUS304 alloy using $8PbO-78Bi_2O_3-8B_2O_3-4ZnO-2SiO_2$ (wt%) system glass frit was investigated. The contact angle was smaller than $90^{\circ}$ at a temperature of $460^{\circ}C$. Redox reaction at the interface between forsterite and SUS304 was found to appear when the electrons in the metal part moved toward the glass part and the oxygen ions in glass moved to the metal side. The decrease of the surface tension due to the PbO solubility on the forsterite side contributed to the better wetting behavior at low temperature.

Effect of Coating Weight of Electroplated Sheet Steels on Quality Performances for Automotive Body Panels (자동차용 전기도금강재의 도금재착항별 품질생성)

  • 김태영;진영술
    • Journal of the Korean institute of surface engineering
    • /
    • v.25 no.2
    • /
    • pp.57-65
    • /
    • 1992
  • Increasing demands of high corrosion resistant sheet steels for the automotive body panels have been leading to a tendency toward heavier coatings of electroplated sheet steels. The specimens were prepared from lab-scale electroplating simulator with various coating weights of zinc, zinc-iron and zinc-nickel coated sheet steels and evaluated in the light of the application for the automotive body panels. Corrosion resistances by sacrificial action were improved with increasing coating weights for all electroplated sheet under survey, but blistering resistances of pure zinc coated sheet steels were not as much. On the other hand, the adhesions of heavy alloy coatings showed poor powdering performances by the external compressive or tensile forces.

  • PDF

True Sedimentation and Particle Packing Rearrangement during Liquid Phase Sintering

  • Lee, Jong-K.;Xu, Lei;Lu, Shu Zu
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.68-69
    • /
    • 2006
  • When an alloy such as Ni-W is liquid phase sintered, heavy solid W particles sedimentate to the bottom of the container, provided that their volume fraction is less than a critical value. The sintering process evolves typically in two stages, diffusiondriven macrosegregation sedimentation followed by true sedimentation. During macrosegregation sedimentation, the overall solid volume fraction decreases concurrently with elimination of liquid concentration gradient. However, in the second stage of true sedimentation, the average solid volume fraction in the mushy zone increases with time. It is proposed that the true sedimentation results from particle rearrangement for higher packing efficiency.

  • PDF

Motion of WC Grains in the Liquid Matrix during Liquid Phase Sintering of WC-Co Alloys (WC-Co계의 액상소결시 코발트 액상 내에서 WC 입자의 움직임)

  • 김소나
    • Journal of Powder Materials
    • /
    • v.3 no.3
    • /
    • pp.196-200
    • /
    • 1996
  • The dispersion of WC grains Into the interior of an eutectic liquid has been studied by superimposing the eutectic WC-85wt.%Co liquid on the top surface of presintered WC-l0wt.%Co alloy compacts. The heavy WC grains diffused into the interior of liquid from the WC-l0wt.%Co compacts. According to increasing the treating temperatures and times, the dispersion distance from WC-l0wt.%Co substrates increased. The fine WC grains diffused into the liquid faster than the coarse WC grains. The high microstructural stability of WC-Co alloys having the heavier WC grains dispersed in a lighter Co-rich liquid was attributed to Brownian motion of WC grains in liquid. The motion of WC grains in the liquid appears to be same with the colloid(the disperse phase) in a dispersing medium. The dihedral angle of 0 degree of WC-Co at. toy seems one of key parameters, which enables the WC-Co alloys to have high structural stability without settling the WC grains during liquid phase sintering.

  • PDF

Change of Hematological Characteristic and Heavy Metal Concentration on Rockfish (Sebastes schlegeli) Rearing in the Copper Alloy Mesh (동합금 가두리 망 사육어류, 조피볼락(Sebastes schlegeli)의 혈액 성상과 중금속 축적률)

  • Yang, Sung-Jin;Jun, Je-Cheon;Park, Jung-Jun;Myeong, Jeong-In;Shin, Yun-Kyung
    • Korean Journal of Ichthyology
    • /
    • v.26 no.3
    • /
    • pp.159-170
    • /
    • 2014
  • The effect of substances discharged from copper alloy mesh on the survival rate, growth, and health status of Sebastes schlegeli was investigated. Survival rate of experimental group was 10% higher than control group. There was no significant difference in weight gain and SGR between control group and experiment group (P<0.05). Glucose concentration was lower in the experimental group than that in the control group. GOT and GPT contents did not show significant difference during experiment except for the early three months of experiment (P<0.05). Ammonia concentration had not significantly changed in the experimental group, but it had increased until four months of experiment and then decreased afterwards in the control group. TCHO had decreased in the experiment group compared with that of control group. Copper and zinc contents had increased as compared with those in the initial stage of experiment with no significant difference between experiment group and control group (P<0.05). Histological analysis for the liver revealed that liver tissues were not particularly different from those in control group. There were no significant differences in survival rate, growth, and hematological characteristic between control group and experiment group (P<0.05). Though copper and zinc were accumulated as compared with those during the initial stage of experiment, the levels were lower than permissible levels for copper and zinc. As a result, copper alloy mesh would not adversely affect on the survival rate, growth, and health status of fishes.

Verification of Shielding Materials for Customized Block on Metal 3D Printing (금속 3D 프린팅을 통한 맞춤형 차폐블록 제작에 사용되는 차폐 재료 검증)

  • Kyung-Hwan, Jung;Dong-Hee, Han;Jang-Oh, Kim;Hyun-Joon, Choi;Cheol-Ha, Baek
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.1
    • /
    • pp.25-30
    • /
    • 2023
  • As 3D printing technology is used in the medical field, interest in metal materials is increasing. The Department of Radiation Oncology uses a shielding block to shield the patient's normal tissue from unnecessary exposure during electron beam therapy. However, problems such as handling of heavy metal materials such as lead and cadmium, reproducibility according to skill level and uncertainty of arrangement have been reported. In this study, candidate materials that can be used for metal 3D printing are selected, and the physical properties and radiation dose of each material are analyzed to develop a customized shielding block that can be used in electron beam therapy. As candidate materials, aluminum alloy (d = 2.68 g/cm3), titanium alloy (d = 4.42 g/cm3), and cobalt chromium alloy (d = 8.3 g/cm3) were selected. The thickness of the 95% shielding rate point was derived using the Monte Carlo Simulation with the irradiation surface and 6, 9, 12, and 16 energies. As a result of the simulation, among the metal 3D printing materials, cobalt chromium alloy (d = 8.3 g/cm3) was similar to the existing shielding block (d = 9.4 g/cm3) in shielding thickness for each energy. In a follow-on study, it is necessary to evaluate the usefulness in clinical practice using customized shielding blocks made by metal 3D printing and to verify experiments through various radiation treatment plan conditions.