• Title/Summary/Keyword: heating temperature distribution

Search Result 547, Processing Time 0.025 seconds

A Study on the Characteristics of Heat Transfer in Quadrangle Duct with Solar Absorber Plate (태양열 집열면이 있는 4각 덕트 내의 열전달 특성에 관한 연구)

  • 고동국;조대진;윤석주;박상규
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.12
    • /
    • pp.1014-1022
    • /
    • 2002
  • This paper analyzed the characteristics of heat transfer in quadangle duct with absorber plate by solar radiation. Effects o( Reynolds number on increasing temperature at outlet for variation of absorber plate temperature were analyzed by using numerical analysis technique. And also the effects of turbulent intensity of inlet flow on increasing temperature at outlet for various duct height and effects of inlet aspect ratio of quadrangle duct and position of heating surface on the outlet temperature were analysed. As the results, Outlet temperature was greatly influenced in low Reynolds number. And the highest outlet temperature distribution appeared on the inlet aspect ratio 2 because of the buoyancy effect.

Distribution of Hot Tap Water Load for District Heating Substation with Hot Tap Water 2-Stage Heat Exchanger (급탕 2단열교환방식 지역난방 열사용시설의 급탕부하 분배에 관한 연구)

  • Jeong, Dong-Hwa;Kim, Joo-Wan;Baik, Young-Jin;Lee, Young-Soo;Chung, Dae-Hun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.4
    • /
    • pp.297-302
    • /
    • 2011
  • According to the standards for district heating substation established by Korea District Heating Corporation, water heating supply systems at over 150 Mcal/h capacity must employ the 2-stage heat exchanger that improves the system efficiency by reusing the heat included in the return water of district heating system already used for space heating. In this paper, the operating characteristics of the system in accordance with the load distribution of two heat exchangers for pre-heating and re-heating cold city water are investigated. The results including mass flow rate, return temperature etc. help to manage district heating system economically.

Experimental Study on the Heating Performances of the Air Heater with Diesel for Passenger Cabin Heating of an Electric Vehicle (전기자동차용 승차공간 난방용 디젤 공기 히터의 실차 성능에 관한 연구)

  • Bang, You-Ma;Seo, Jae-Hyeong;Lee, Moo-Yeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.11
    • /
    • pp.7250-7255
    • /
    • 2015
  • The objective of this study is to experimentally investigate the heating performances of the portable air combustion heater using diesel fuel for auxiliary cabin heating of the battery electric vehicle. In order to evaluate the heating performances of the air combustion heater, the heating capacity was calculated by the temperature at inlet and outlet parts of the considered heater and the inner temperature distribution characteristics of the vehicle were measured during 1600 seconds with an interval of 1 second. The theoretical efficiency of the tested heater was calculated by temperature data of the air of supplying and exhausting to the cabin. As the air passed the heat-sink, the air temperature at the end of heat-sink reached to $101.3^{\circ}C$ and the difference of temperature on heat-sink was 67.8%. The average heating capacity of the air combustion heater showed 2.0 kW. After 1800 seconds, the inner temperature of the vehicle cabin was continuously increased. The temperatures of the top side and the bottom side of the car cabin under consideration were increased upto $42.5^{\circ}C$ and $24.3^{\circ}C$, respectively, and the theoretical efficiency of the tested heater was on average 63.7%.

A Study on the External Wall Heating Temperature Distribution According to Opening Upper Shading Installation and Length (개구부 상부 차양설치 및 길이에 따른 외벽 수열온도분포에 관한 연구)

  • Jung, Ui-In;Hong, Sang-Hun;Kim, Bong-Joo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.20 no.4
    • /
    • pp.339-345
    • /
    • 2020
  • This study used a real-scale model experiment to reproduce internal fires in residential buildings such as a multi-dwelling unit, in order to prevent damage caused by tens of thousands of fires witnessed each year and to take measures to cope with them. For experimental conditions, different opening sizes were applied to measure and analyze the heating temperature of the exterior wall. Results drawn are as follow : On top of this, the experimental conditions had whether to install shading and put a shading length differently, before measuring and analyzing the heating temperature of the exterior wall. Subsequent results were drawn as shown below. Based on the maximum temperature, the temperature was lowered as much as around 90℃ at 150mm, around 150℃ or over at 300mm and over 175℃ at 450mm. It also turned out that the difference in maximum temperature dropped by around 180℃ or over. This indicated that the shading installation works well in lowering flame temperature generated by fire spread of the exterior wall.

A Case Study for the Economic Feasibility Model and Analysis of a GDHS Given Geothermal Temperature (기대지열온도하에서 GDHS의 경제성분석 사례연구)

  • Yang, Moon-Hee;Kim, Tai-Yoo;Lee, Sang-Kyu
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.23 no.1
    • /
    • pp.115-127
    • /
    • 1997
  • A GDHS(Geothermal District Heating System) is a heating system supplying a group of districts with heat extracted from geothermal sources. The advantages of GDHS include saving fuel consumption as well as reducing air pollution. This paper presents a case study for the economic feasibility model and analysis of a GDHS with which central/individual heating systems are replaced. Configuring to a simplified GDHS which consisits of subsurface systems, surface systems, and transmission/distribution systems, we find out the properties of the system and the model parameters affecting the initial investment/operating costs in order to develop a classical economic feasibility model given geothermal temperature. Based on our model parameter space, we analyzed the geothermal development project of the Jejoo Island probabilistically given prior information such as the expected geothermal power, the demand size and the length of transmission/distribution pipes.

  • PDF

The Study of Human Response for Floor Surface Temperature and Resident's Posture Change (바닥 복사 난방시 바닥온도와 거주자 자세 변화에 따른 인체 반응에 관한 연구)

  • Kim, Dong-Gyu;Kim, Se-Hwan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.12
    • /
    • pp.846-851
    • /
    • 2012
  • The radiant floor heating system is traditional heating system in korea. Radiant floor heating is small in vertical temperature difference, air stream and radiant heat distribution is uniform. And radiant floor heating system provide thermal comfort conditions to the a resident. This study was undertaken to evaluate the physiological-subjective responses of the resident's posture change such as sitting and standing. The experimental investigations were carried out in climate chamber, and subjects were 4 college-age students in good health. The physiological response was skin temperature and subjective response was undertaken survey of TSV and CSV. The results were summarized as follows; The comfortable temperature range of plantar surface was $35.1{\sim}38.9^{\circ}C$ and buttock surface was $37.8{\sim}39.3^{\circ}C$.

Study on the Development of Multi Heat Supply Control Algorithm in Apartment Building of District Heating Energy (지역난방 에너지 공동주택의 다중 열공급 제어 알고리즘 개발에 관한 해석적 연구)

  • Byun, J.K.;Choi, Y.D.;Park, M.H.;Shin, J.K.
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.2
    • /
    • pp.63-70
    • /
    • 2011
  • In the present study, we developed optimal heat supply algorithm which minimizes the heat loss through the distribution pipe line in group energy apartment. Heating load variation of group energy apartment building in accordance with outdoor air temperature was predicted by the correlation obtained from calorimeter measurements of whole households of apartment building. Supply water temperature and mass flow rate were conjugately controlled to minimize the heat loss rate through distribution pipe line. Group heating apartment located in Hwaseong city, Korea, which has 1,473 households divided in 4 regions, was selected as the object apartment for verifying the present heat supply control algorithm. Compared to the original heat supply system, 10.4% heat loss rate reduction can be accomplished by employing the present control algorithm.

Improvement of Thermal Enviromental by Two Air Out in Hot Air Heating (이중 취출구에 의한 온풍난방시의 열환경 개선)

  • Jang, In-Seong;Kim, J.S
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.33 no.3
    • /
    • pp.209-217
    • /
    • 1997
  • The objective of this paper is to improve a discomfort caused by the unequal airflow and vertical temperature difference by buoyancy of the supplied hot air in the conventional hot air heating system. In order to the model experiment we manufactured the hot air heater with two air outlet and a model room. We observed the temperature, velocity and airflow distribution and calculated values of PMV and PPD using mean value of central verticality section's air temperature and velocity. We could improve distribution of vertical temperature and velocity at the central section of the model room owing to correlation of hot air of two air outlet.

  • PDF

A Study on the Optimal Arrangement of Heating and Cooling Tubes for Uniform Temperature Distribution of Heat Transfer Surface (전열면 온도의 균일분포를 위한 냉각 및 가열관의 최적 배열에 관한 연구)

  • Min, H.S.;Lee, W.I.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.2 no.1
    • /
    • pp.74-83
    • /
    • 1990
  • The temperature distributions inside molds with heating or cooling tubes were calculated using special boundary element method. This special boundary element method was employed in order to reduce the error for small diameter tubes. Calculated temperature was compared with results using finite element method. It was found that the current method becomes more accurate as tubes' diameter gets smaller. Optimal arrangement of tubes for uniform temperature distribution along specific surface was found. CONMIN program was employed for the optimization.

  • PDF