• Title/Summary/Keyword: heating temperature and time

Search Result 1,375, Processing Time 0.027 seconds

Comparative Analysis of the Parabolic and Hyperbolic Heat Conduction and the Damped Wave in a Finite Medium (유한한 평판에서 포물선형 및 쌍곡선형 열전도 방정식과 파동 방정식의 비교 해석)

  • Park, S.K.;Lee, Y.H.
    • Journal of Power System Engineering
    • /
    • v.3 no.3
    • /
    • pp.14-21
    • /
    • 1999
  • The wave nature of heat conduction has been developed in situations involving extreme thermal gradients, very short times, or temperatures near absolute zero. Under the excitation of a periodic surface heating in a finite medium, the hyperbolic and parabolic heat conduction equations and the damped wave equations in heat flux are presented for comparative analysis by using the Green's function with the integral transform technique. The Kummer transformation is also utilized to accelerate the rate of convergence of these solutions. On the other hand, the temperature distributions are obtained through integration of the energy conservation law with respect to time. For hyperbolic heat conduction, the heat flux distribution does not exist throughout all the region in a finite medium within the range of very short times(${\xi}<{\eta}_l$). It is shown that due to the thermal relaxation time, the hyperbolic heat conduction equation has thermal wave characteristics as the damped wave equation has wave nature.

  • PDF

A Study of the Defrosting Control in the Application of Photoelectric Sensors (광센서를 이용한 제상제어 방법에 대한 연구)

  • Jeon, ChangDuk
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.4
    • /
    • pp.167-174
    • /
    • 2017
  • This study attempted to investigate the value of photoelectric sensors in terms of a defrost-control method. Tests were conducted in a calorimeter room under the heating with the defrost-performance test conditions described in KS C 9306. Accordingly, the photoelectric technology is a competitive defrost-control method that can precisely control the operational defrost cycle using the output voltages that are proportional to the frost height. The heating period is gradually reduced because the complex defrost-control method, for which the sensors initiate the defrosting process and the defrosting process is terminated by the time parameter, could not adjust the net defrosting time by itself. Therefore, a complex defrost-control method, for which the photoelectric sensors start the defrosting process and it is terminated by the temperature parameter, is preferred because of the adjustment of the net defrosting time. Regardless of the defrost-control method, the first defrosting cycle is activated earlier than the times that are determined in the second and third cycles and so on, because the first operation cycle can decide the characteristics of the subsequent cycle.

Theoretical Analysis of Ignition of a Coal-Water Slurry Droplets with Interior Temperature Distribution (내부 온도분포를 고려한 Coal-Water Slurry의 점화현상에 관한 이론적 해석)

  • Choi, C.E.;Baek, S.W.;Kim, J.W.
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.7 s.94
    • /
    • pp.1823-1832
    • /
    • 1993
  • CWS(coal-water slurry) is used for application in power plants, boilers, industrial furnaces. A single coal-water slurry droplet ignition has been examined to reveal the basic nature of their evaporation, volatilization and heating processes. The interior droplet temperature distribution has been considered. The effect of coal thermal conductivity, droplet size, water fraction in the slurry, gas temperature and velocity and radiation on the ignition phenomena were also studied. Either increasing the velocity and gas temperature or decreasing the droplet size and water fraction in the slurry may reduce the time for evaporation and ignition delay time.

Properties of Puffed Mulberry-Rice Snack, Ppeongtuigi by Pellet with Mulberry Leaf and Brown Rice Flour (뽕잎 분말과 현미가루가 첨가된 pellet을 이용하여 제조한 뽕잎 팽화과자(뻥튀기)의 특성)

  • Jang, Eun-Young;Jin, Tie-Yan;Eun, Jong-Bang
    • Korean Journal of Food Science and Technology
    • /
    • v.38 no.6
    • /
    • pp.756-761
    • /
    • 2006
  • The physical and sensory properties of puffed mulberry-rice snack (PMRS) by pellet with mulberry leaf and brown rice flour were evaluated at different temper moisture contents and at varying puffing temperatures. The mulberry pellets were prepared using a food extruder to extrude the dough made from mulberry leaf powder and brown rice flour. The mulberry pellets were tempered to 14, 16, and 18% moisture content and were puffed at 220, 230, and 240$^{\circ}C$ for 4, 5, and 6 sec. The specific volume and breaking strength of PMRS increased with heating temperature and time; however, the breaking strength decreased as the moisture content increased. The Hunter L value decreased as the heating temperature and time increased, showing an especially large decrease with increased heating time. The a and b values increased with increasing heating temperature and time. These results indicated that PMRS, which has a distinctive flavor and color, could be effectively used as a functional food with the use of a puffing machine and that PMRS shows potential for use as new snack product.

Defect Detection of Ceramic Heating Plate Using Ultrasound Pulse Thermography (초음파 펄스 서모그라피를 이용한 세라믹 전열 판의 결함 검출)

  • Cho, Jai-Wan;Seo, Yong-Chil;Jung, Seung-Ho;Kim, Seung-Ho;Jung, Hyun-Kyu
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.4 s.287
    • /
    • pp.259-263
    • /
    • 2006
  • The applicability of UPT (Ultrasound Pulse Thermography) for real-time defect detection of the ceramic heating plate is described. The ceramic heating plate with superior insulation and high radiation is used to control the water temperature in underwater environment. The underwater temperature control system can be damaged owing to the short circuit, which resulted from the defect of the ceramic heating plate. A high power ultrasonic energy with pulse duration of 280 ms was injected into the ceramic heating plate in the vertical direction. The ultrasound excited vibration energy sent into the component propagate inside the sample until they were converted to the heat in the vicinity of the defect. Therefore, an injection of the ultrasound pulse wave which results in heat generation, turns the defect into a local thermal wave transmitter. Its local emission is monitored and recorded via the thermal infrared camera at the surface which is processed by image recording system. Measurements were Performed on 4 kinds of samples, composed of 3 intact plates and the defect plate. The observed thermal image revealed two area of crack in the defective ceramic heating plate.

Thermal Heating Characteristics of Electroless Cu-Plated Graphite Fibers (무전해 구리도금 된 흑연 섬유의 발열 특성)

  • Lee, Kyeong Min;Kim, Min-Ji;Lee, Sangmin;Yeo, Sang Young;Lee, Young-Seak
    • Korean Chemical Engineering Research
    • /
    • v.55 no.2
    • /
    • pp.264-269
    • /
    • 2017
  • To improve heating characteristics of graphite fibers, graphite fibers were copper-plated by electroless plating. The Cu-plated graphite fibers were investigated by thermos-gravimetric analysis in air to calculate quantities of copper on surface of graphite fiber according to plating time. Also, the surface temperature with applied voltage was observed by thermos-graphic camera using a strand of graphite fiber. According to the increment of plating time, the higher quantities of plated copper on graphite fiber were obtained. The electric conductivity of plated graphite fiber for 20 minutes was resulted in 1594.3 S/cm, and surface temperature of this sample showed the maximum temperature $57.2^{\circ}C$. These result could be attributed that copper having great electric conductivity are growing on graphite fiber and followed improving heating characteristics.

GENERALIZED THERMOELASTICITY WITH TEMPERATURE DEPENDENT MODULUS OF ELASTICITY UNDER THREE THEORIES

  • Ezzat, M.;Zakaria, M.;Abdel-Bary, A.
    • Journal of applied mathematics & informatics
    • /
    • v.14 no.1_2
    • /
    • pp.193-212
    • /
    • 2004
  • A new model of generalized thermoelasticity equations for isotropic media with temperature-dependent mechanical properties is established. The modulus of elasticity is taken as a linear function of reference temperature. The present model is described both generalizations, Lord Shulman (L-S) theory with one relaxation time and Green-Lindsay (G-L) with two relaxation times, as well as the coupled theory, instantaneously. The method of the matrix exponential, which constitutes the basis of the state space approach of modern control theory, applied to two-dimensional equations. Laplace and Fourier integral transforms are used. The resulting formulation is applied to a problem of a thick plate subject to heating on parts of the upper and lower surfaces of the plate that varies exponentially with time. Numerical results are given and illustrated graphically for the problem considered. A comparison was made with the results obtained in case of temperature-independent modulus of elasticity in each theory.

Research on the Thermal Comfort Heating Mode Considering Psychological and Physiological Response of Automobile Drivers (운전자의 심리·생리 반응을 고려한 승용차 쾌적 난방 모드에 관한 연구)

  • Kim, Min Soo;Kum, Jong Soo;Park, Jong Il;Kim, Dong Gyu
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.30 no.3
    • /
    • pp.149-157
    • /
    • 2018
  • In this research, the psychological and physiological reactions of the driver were measured during winter to evaluate thermal comfort. The experiment was conducted using 3 different cases which are hot air heating, warm-wire seat heating and hot air & warm-wire seat heater operating simultaneously. With regard to psychological reaction, the warm-wire heating mode was the most preferred. The reason is that it is dry in other cases. With regard to EEG response, thermal comfort increased by 37% in warm air mode heating. In addition, when the warm-wire heating mode and the hot air & warm-wire heating mode were simultaneously operated, the thermal comfort continuously increased by between 17% and 20% for 20 minutes after boarding. Under the change of the autonomic nervous system, the thermal stress level increased by 23% after 15 minutes on board in the hot air heating mode and decreased continuously by 13% during the warm-wire seat heating mode. We recommended the hot air heating mode is only used for a short time to raise the inside temperature during the early boarding period and that warm-wire seat heating mode be actively utilized.

A Study on the Characteristics of Cylinder Wake Placed in Thermally Stratified Flow (IV) -On the Cylinder Wake with Various Heating Rates- (열성층유동장에 놓인 원주후류의 특성에 대한 연구 (4) -가열량의 변화에 따른 원주후류에 대하여-)

  • 김경천;정양범
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.5
    • /
    • pp.1340-1350
    • /
    • 1995
  • The effects of thermal stratification on the flow past a heated circular cylinder with various heating rates were examined in a wind tunnel. Turbulent intensities, r.m.s.values of temperature and turbulent convective heat flux distributions in the cylinder wakes with and without thermal stratification were measured by using a hot-wire and cold-wire combination probe. The phase averaging method was also used to estimate coherent contributions to the turbulent flow field in the near wake. The results show that the scalar mixing process is very different according to the mean temperature fields especially in the upper part of the wake. The coherent structure of the temperature field makes a large contribution to the time mean value like velocity components. However, the coherency of the temperature fluctuation is very different with the change of mean temperature fields, though the velocity coherent motions are quite similar in all experimental conditions.

Heating Characteristics Evaluation of Superposed Sonication Using Glycerol Tissue Mimic Phantom (글리세롤 조직유사 팬텀을 이용한 초음파 중첩 조사에 따른 가열 특성 평가)

  • Noh, Si-Cheol;Kang, Sang-Sik;Park, Ji-Koon;Kim, Ju-Young;Jung, Bong-Jae
    • Journal of the Korean Society of Radiology
    • /
    • v.9 no.7
    • /
    • pp.523-528
    • /
    • 2015
  • In this study, we evaluated the heating characteristics of single sonication and superposed two low-intensity ultrasonic sonication. Compare the results, the superposed sonication was showed a superior thermal effect than single sonication. And the maximum temperature was increased as 120-150%. The starting time of temperature rising has been shortened in superposed sonication. In addition, the time up to the maximum temperature has been shortened, too. In generally, as the ultrasonic intensity is higher, the more surface damage is occurred. However, in the case of superposed sonication, the same thermal effect had be confirmed without surface damage. Through the results of the study, we thought that the superposed sonication will be able to reduce the intensity of the ultrasonic treatment. And, by using the low-intensity, the more safe and more effect therapy will be possible in therapeutic ultrasound application.