Browse > Article
http://dx.doi.org/10.9713/kcer.2017.55.2.264

Thermal Heating Characteristics of Electroless Cu-Plated Graphite Fibers  

Lee, Kyeong Min (Department of Chemical Engineering and Applied Chemistry, Chungnam National University)
Kim, Min-Ji (Department of Chemical Engineering and Applied Chemistry, Chungnam National University)
Lee, Sangmin (Department of Chemical Engineering and Applied Chemistry, Chungnam National University)
Yeo, Sang Young (Korea Institute of Industrial Technology (KITECH))
Lee, Young-Seak (Department of Chemical Engineering and Applied Chemistry, Chungnam National University)
Publication Information
Korean Chemical Engineering Research / v.55, no.2, 2017 , pp. 264-269 More about this Journal
Abstract
To improve heating characteristics of graphite fibers, graphite fibers were copper-plated by electroless plating. The Cu-plated graphite fibers were investigated by thermos-gravimetric analysis in air to calculate quantities of copper on surface of graphite fiber according to plating time. Also, the surface temperature with applied voltage was observed by thermos-graphic camera using a strand of graphite fiber. According to the increment of plating time, the higher quantities of plated copper on graphite fiber were obtained. The electric conductivity of plated graphite fiber for 20 minutes was resulted in 1594.3 S/cm, and surface temperature of this sample showed the maximum temperature $57.2^{\circ}C$. These result could be attributed that copper having great electric conductivity are growing on graphite fiber and followed improving heating characteristics.
Keywords
Electroless plating; Graphite fibers; Surface morphology; Heat characteristics;
Citations & Related Records
Times Cited By KSCI : 12  (Citation Analysis)
연도 인용수 순위
1 Kim, Y. S., Shin, J., Kim, H. I., Cho, J. H., Seo, H. K., Kim, G. S. and Shin, H. S., "A Study of Copper Electroless Deposition on Tungsten Substrate, " Korean Chem., Eng. Res., 43(4), 495-502 (2005).
2 Chien, A. T., Cho, S., Joshi, Y. and Kumar, S., "Electrical Conductivity and Joule Heating of Polyacrylonitrile/carbon Nanotube Composite Fibers," Polymer, 585, 6895-6905(2014).
3 Oya, N. and Johnson, D. J., "Longitudinal Compressive Behavior and Microstructure of PAN-based Carbon Fibers," Carbon, 39, 635-645(2001).   DOI
4 Choi, K. E., Park, C. H. and Seo, M.K., "Electrical and Resistance Heating Properties of Carbon Fiber Heating Element for Car Seat," Appl. Chem. Eng., 27, 210-216(2016).   DOI
5 Yamamoto, Y., Akiyama, H., Ooka, K., Yamamura, K., Oshikane, Y. and Zettsu, N., "Nanomoter-level Self-aggregation and Three-dimensional Growth of Copper Nanoparticles Under Dielectric Barrier Discharge at Atmospheric Pressure, " Curr. Appl. Phys., 12, S63-S68(2012).
6 Chong, S. P., Ee, Y. C., Chen, Z. and Law, S. B., "Electroless Copper Seed Layer Deposition on Tantalum Nitride Barrier Film", Surf. Coat. Technol., 198, 287-290(2005).   DOI
7 Ng, H. T., Li, S. F. Y., Chan, L., Loh, F. C. and Tan, K. L., "Sequential Observation of Electroless Copper Deposition via Noncontact Atomic Force Microscopy", J. Electrochem. Soc., 145, 3301-3307 (1998).   DOI
8 Xueping, G., Yating, W., Lei, L., Bin, S. and Wenbin, H., "Electroless Coper Plating on PET Fabrics Using Hypophosphite as Reducing Agent," Surf. Coat. Technol., 201, 7018-7023(2007).   DOI
9 Li, J., Hayden, H. and Kohl, P. A., "The Influence of 2,2'-dipyridyl on Non-formaldehyde Electroless Copper Plating", Electrochem. Acta, 49, 1789-1795(2004).   DOI
10 Touir, R., Larhzil, H., Ebntouhami, M., Cherkaoui, M. and Chassaing, E., "Electroless Deposition of Copper in Acidic Solution Using Hypophosphite Reducing Agent," J. Appl. Electrochem., 36, 69-75(2006).   DOI
11 Li, J. and Koal, P. A., "The Acceleration of Nonformaldehyde Electroless Copper Plating, " J. Electrochem. Soc, 149, C631-C636 (2002).   DOI
12 Tian, F., Li, H. P., Zhao, N. Q. and He, C. N., "Catalyst Effects of Fabrication of Carbon Nanotubes Synthesized by Chemical Vapor Deposition," Mater. Chem. Phys., 115, 493-495(2009).   DOI
13 Lu, W., Donepudi, V. S., Prakash, J., Liu, J. and Amine, K., "Electrochemical and Thermal Behavior of Copper Coated Type MAG-20 Natural Graphite", Electrochim. Acta, 47, 1601-1606(2002).   DOI
14 Fosbury, A., Wang, S., Pin, Y. F. and Chung, D. D. L., "The Interlaminar Interface of a Carbon Fiber Polymer-matrix Composite as a Resistance Geating Element," Composites: Part A, 34, 933-940(2003).   DOI
15 Kim, M., Kong, K., Kim, N., Park, H. W., Park, O., Park, Y. B., Jung, M., Lee, S. H. and Kim, S. G., "Experimental and Numerical Study of Heating Characteristics of Discontinuous Carbon Fiber-epoxy Composites," Compo. Res., 26, 72-78(2013).   DOI
16 Jung, M. J., Park, M. S., Lee, S. and Lee, Y. S., "Effect of E-beam Radiation with Acid Drenching on Surface Properties of Pitch-based Carbon Fibers," Appl. Chem. Eng., 27, 319-324(2016).   DOI
17 Carrillo-Escalante, H. J., Alvarez-Castillo, A., Valadez-Gonzalez, A. and Herrera-Franco P. J., "Effect of Fiber-matrix Adhesion on the Fracture Behavior of a Carbon Fiber Reinforced Thermoplastic-modified Epoxy Matrix," Carbon Lett., 19, 47-56(2016).   DOI
18 Chu, K., Yun, D. J., Kim, D., Park, H. and Park, S. H., "Study of Electric Heating Effects on Carbon Nanotube Polymer Composites," Org. Electron., 15, 2734-2741(2014).   DOI
19 Jee, M. H., Lee, J. H., Lee, I. S. and Baik, D. G., "Electrical Properties and Heating Performance of Polyurethane Hybrid Nanocomposite Films Containing Graphite and MWNTs," Text. Sci. Eng., 50, 108-114(2013).   DOI
20 Pyo, D., Eom, S., Lee, Y. S. and Ryu, S., "Exothermic Characteristics of PAN-based Carbon Fiber According to High Temperature Treatment, " Korean Chem., Eng. Res., 49(2), 218-223(2011).   DOI
21 Kim, B. J., Choi, W. K., Song, H. S., Park, J. K., Lee, J. Y. and Park, S.J., "Preparation and Characterization of Highly Conductive Nickel-coated Glass Fibers," Carbon Lett., 9, 105-107(2008).   DOI
22 Kim, B. J., Choi, W. K., Um, M. K. and Park, S. J., "Effects of Nickel Coating Thickness on Electric Properties of Nickel/carbon Hybrid Fibers," Surf. Coat. Technol., 205, 3416-3421(2011).   DOI
23 Kim, D. Y., Yun, K. J. and Lee, Y. S., "Electromagnetic Interference Shielding Characteristics of Electroless Plated Carbon Nanotubes," Appl. Chem. Eng., 25, 268-273(2014).   DOI
24 Xu, C., Liu, G., Chen, H., Zhou, R. and Liu, Y., "Fabrication of Conductive Copper-coated Glass Fibers Through Electroless Plating Process," J. Mater. Sci.: Mater. Electron., 25, 2611-2617 (2014).   DOI
25 Rathmell, A. R. and Wiley, B. J., "The Synthesis and Coating of Long, Thin Copper Nanowires to Make Flexible, Transparent Conducting Films on Plastic Substrates," Adv. Mater., 23, 4798-4803(2011).   DOI
26 Kim, M. J. and Kim, J. J, "Electrodeposition for the Fabrication of Copper Interconnection in Semiconductor Devices," Korean Chem. Eng. Res., 52(1), 26-39(2014).   DOI
27 Kim, H. C. and Kim, J. J., "Through-silicon-via Filling Process Using Cu Electrodeposition," Korean Chem. Eng. Res., 54(6), 723-733(2016).   DOI
28 Yousel, A., El-Halwany, M. M., Barakat, N. A. M., Al-Maghrabi, M. N. and Kim, H. Y., "$Cu_0$-doped $TiO_2$ Nanofibers as Potential Photocatalyst and Antimicrobial Agent," J. Ind. Eng. Chem., 26, 251-258(2015).   DOI
29 Choi, J. R., Rhee, K. Y. and Park, S. J., "Post-annealing Effects of Electroless Ni-B-plated MWCNTs on Thermal Conductivity of Epoxy-based Composites", J. Ind. Eng. Chem., 31, 47-50(2015).   DOI
30 Yoon, H. S., Oh, J. H., Lee, H. K., Jeon, J. K. and Ryu, S. K., "Preparation of Electroless Copper Plated Activated Carbon Fiber Catalyst and Reactive Evaluation of NO Removal," Korean Chem., Eng. Res., 46(5), 863-867(2008).
31 Oh, K. H., "Corrosion Protection for Electroless Cu Plated PET by Surface Confined Additives", Text. Sci. Eng., 38, 309-317(2001).