• Title/Summary/Keyword: heating temperature and time

Search Result 1,377, Processing Time 0.037 seconds

Characteristics of Temperature, Humidity and PPF Distribution by Covering Method and Environmental Control in Double Covering Greenhouse (이중피복 온실의 피복방법과 환경조절에 따른 온습도 및 광합성유효광량자속 분포 특성)

  • Lee, Hyun-Woo;Sim, Sang-Youn;Kim, Young-Shik
    • Journal of Bio-Environment Control
    • /
    • v.21 no.1
    • /
    • pp.1-11
    • /
    • 2012
  • The objective of the present study is to provide data needed to find double covering method to be able to improve environment of temperature, humidity and PPF in tomato greenhouse. The distribution charts of temperature, humidity and PPF which were measured in environment control conditions such as thermal insulation, air heating, roof ventilation and air fog cooling in conventional and air inflated double layers greenhouses were drawn and analysed. The thermal insulation effect of the air inflated greenhouse was the same as that of conventional greenhouse because the temperature between insulation curtain and roof covering material was equal in heating season. The ventilation effect of the air inflated greenhouse was superior to the conventional greenhouse. The temperature distribution in the fog cooled greenhouse was uniform and the cooling effect was about $3.5^{\circ}C$. The condensation on the roof covering surface could be controlled by removing the moisture between insulation curtain and roof covering by using humidifier. The PPF of conventional greenhouse was more decreased than the air inflated greenhouse as time went by because the transmittance of conventional greenhouse declined by dust collected on the inside plastic film owing to rolling up and down operation for ventilation.

Characteristics of Manufacturing for Special Cement Using High Chlorine by-product (고염소 부산물을 이용한 특수시멘트 제조 특성)

  • Moon, Kiyeon;Cho, Jinsang;Choi, Moonkwan;Cho, Kyehong
    • Resources Recycling
    • /
    • v.30 no.6
    • /
    • pp.68-75
    • /
    • 2021
  • This study aims to investigate the manufacturing process of calcium chloride-based special cement, i.e., CCA (calcium chloro aluminate, C11A7·CaCl2), which uses limestone, by using one type of random industrial by-product, domestic coal ash, cement kiln dust. The manufacturing process of was examined in detail, and the results suggested that the amount of CCA synthesized increased with an increase in the firing temperature. The manufacturing process of CCA was investigated at 1200℃, which was determined as the optimum firing temperature. The results showed that in general, the amount of CCA synthesized tended to increase with an increase in the firing time; however, the clinker melted when the firing time was more than 30 min, thereby suggesting that a firing time of less than 20 min would be suitable for the clinkering process. The optimal firing conditions for manufacturing CCA were obtained as follows: heating rate of 10 ℃/min, firing temperature of 1200 ℃, and holding time of 20 min. The results also suggest that manufacturing CCA will be easier when high chlorine-containing cement kiln dust is used.

Study on Plrene Removal Characteristic From An Artificially Contaminated EPA Synthetic Soil Matrix With Varying Heat Treatment Conditions (Pyrene으로 오염된 EPA토양의 열적처리조건에 따른 오염물질 제거 특성 연구)

  • 김영규;양고수
    • Journal of Korea Soil Environment Society
    • /
    • v.5 no.2
    • /
    • pp.55-66
    • /
    • 2000
  • A U.S EPA Synthetic soil matrix was used for reference neat soil and pyrene contaminated soil. For the contaminated soil, 4.79 wt.% pyrene was dissolved completely into the djchlorornethane, and the soil was evenly soaked with the pyrene solution. The contaminated soil samples(50$\pm$0.5mg) were heated in a modified electrical screen heater reactor which consisted of a thin stainless foil (3.5cm$\times$13cm$\times$0.00254cm, 302 stainless steel shim), two electrodes, and a 20cm dia. $\times$30cm tall cylindrical Pyrex chamber sealed at both ends by aluminum flanges. The heating rate and time conditions were selected as $455^{\circ}C$ @ $1137^{\circ}C$ /s, $760^{\circ}C$ @ $950^{\circ}C$ /s and $977^{\circ}C$ @ $977^{\circ}C$/s. Tar samples after heating the soils were collected on the aluminum foil funnel and a glass filter paper (25mm dia. filter paper) The tar sample and remnant soil on the reactor were extracted with dichloromethane covering the filters, foils and soil by sonicating each in the waterbath for 10 minutes. The extractions were run on a HPLC. At the low peak temperature(about $455^{\circ}C$ @ $1137^{\circ}C$/s) the color of tar was "white", at the middle peak temperature (about 76$0^{\circ}C$ @ 95$0^{\circ}C$/s) the color of tar was "pink brown", at the high peak temperature (about 977$^{\circ}C$ @ 977$^{\circ}C$/s) the color of tar was "dark brown". Cyclopeta(cd)pyrene (CPEP) , which is an interesting species due to mutagenic effect on human cells, was detected in tar samples only above the middle peak temperature. This species was not detected at the low peak temperature. Six isomers of bipyrene were detected. Phenanthrene(C$_{14}$ $H_{10}$) and cyclopenta(def)phenanthrene(C$_{15}$ $H_{10}$) were also detected, but their content was very small relative to the other listed compounds.to the other listed compounds.

  • PDF

Performance of steel beams at elevated temperatures under the effect of axial restraints

  • Liu, T.C.H.;Davies, J.M.
    • Steel and Composite Structures
    • /
    • v.1 no.4
    • /
    • pp.427-440
    • /
    • 2001
  • The growing use of unprotected or partially protected steelwork in buildings has caused a lively debate regarding the safety of this form of construction. A good deal of recent research has indicated that steel members have a substantial inherent ability to resist fire so that additional fire protection can be either reduced or eliminated completely. A performance based philosophy also extends the study into the effect of structural continuity and the performance of the whole structural totality. As part of the structural system, thermal expansion during the heating phase or contraction during the cooling phase in most beams is likely to be restrained by adjacent parts of the whole system or sub-frame assembly due to compartmentation. This has not been properly addressed before. This paper describes an experimental programme in which unprotected steel beams were tested under load while it is restrained between two columns and additional horizontal restraints with particular concern on the effect of catenary action in the beams when subjected to large deflection at very high temperature. This paper also presents a three-dimensional mathematical modelling, based on the finite element method, of the series of fire tests on the part-frame. The complete analysis starts with an evaluation of temperature distribution in the structure at various time levels. It is followed by a detail 3-D finite element analysis on its structural response as a result of the changing temperature distribution. The principal part of the analysis makes use of an existing finite element package FEAST. The effect of columns being fire-protected and the beam being axially restrained has been modelled adequately in terms of their thermal and structural responses. The consequence of the beam being restrained is that the axial force in the restrained beam starts as a compression, which increases gradually up to a point when the material has deteriorated to such a level that the beam deflects excessively. The axial compression force drops rapidly and changes into a tension force leading to a catenary action, which slows down the beam deflection from running away. Design engineers will be benefited with the consideration of the catenary action.

An Experimental Study on the Energy Separation in the Geometric Setup of a Low Pressure Vortex Tube (저압용 vertex tube의 기하학적형상에 따른 에너지 분리특성에 관한 실험적 연구)

  • 오동진;류정인
    • Journal of Energy Engineering
    • /
    • v.11 no.3
    • /
    • pp.276-282
    • /
    • 2002
  • The process of energy separation in a low Pressure vortex tube with compressed air as a work-ing medium is studied in detail. Experimental data of the temperature of the cold and hot air leaving the vortex tube are presented. The variation of the maximum wall temperature along the inner surface of the vortex tube and the temperature distribution in a vortex tube provide useful information about the location of the stagnation point of the flow field at the axis of the vortex tube. Analysis of the results enabled to find the optimum length of the vortex tube, the optimum shape of the Throttle and the usefulness of the Sleeve. In this study Outer tube is used for the exhaust application. The hot gas flow is turned 180$^{\circ}$and passes the out-side of the vortex tube a second time heating it. From this geometric setup of a vortex tube He effects of energy separation and the prediction of the ignition of Diesel Soot is presented by experimental data.

Temperature Distribution of Wet-Mixed High Strength Sprayed Polymer Mortar for Fire Resistance of Tunnel (터널 내화용 고강도 습식 스프레이 폴리머 모르타르의 화재 발생시 내부온도분포)

  • Won, Jong Pil;Choi, Seok Won;Park, Chan Gi;Park, Hae Kyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4C
    • /
    • pp.283-290
    • /
    • 2006
  • Concrete has advantages in fire situations as it is non-combustible and has low thermal conductivity. However, concrete that is not designed against fire can experience significant explosive spalling from the build-up of pore pressures and internal tensile stresses when heated. In this study, the performance of wet-mixed high strength sprayed polymer mortar for fire resistance of tunnel system was evaluated by experimentally and numerically. The fire test was performed in fire resistance(electric) furnace according to RABT(Richtlinien fur die Ausstatung und den Betrieb von $Stra{\beta}entunneln$) time heating temperature curve, so as to evaluate the temperature distribution with cover thickness of wet-mixed high strength sprayed polymer mortar for fire resistance of tunnel system. Based on experimental results and numerical analysis, the proper cover thickness of wet-mixed high strength sprayed polymer mortar determined the more than 4cm.

Hydrothermal Synthesis of Smectite from Dickite (딕카이트로부터 스멕라이트의 수열합성)

  • Ryu Gyoung-Won;Jang Young-Nam;Bae In-Kook;Chae Soo-Chun;Choi Sang-Hoon
    • Journal of the Mineralogical Society of Korea
    • /
    • v.17 no.3
    • /
    • pp.267-275
    • /
    • 2004
  • A hydrothermal process was used to synthesize dioctahedral smectite from dickite [$A1_2$$Si_2$$O_{5}$ $(OH)_4$], Dickite was previously activated by heating at $800^{\circ}C$ far 4 hours with $Na_2$$CO_3$. After the heat-treatment, $SiO_2$ was added for stoichiometry, The autoclaving was carried out in closed stainless steel vessel (about 1 liter) at the condition of various temperature, pressure, time etc. High quality smectite could be obtaind by heating at $290^{\circ}C$ under the pressure of 60 kgf/$\textrm{cm}^2$ for 48 hours. This experiment reveals that pH of the solution was an important factor and should be maintained at 10 to 11 for the formation of dioctahedral smectite. The synthesized smectite was identified as Na-beidellite by the treatment of ethylene glycol and Greene-Kelly test.

A Study on Treatment Conditions of Oil Contaminated Soil by Low Temperature Thermal Desorption (저온 열 탈착에 의한 유류 오염토의 처리 조건의 연구)

  • Ha, Sang-An;Yeom, Hae-Kyong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.8
    • /
    • pp.956-960
    • /
    • 2007
  • The objective of this study is to remove BTEX(Benzene, Toluene, Ethylene, Xylene) and TPH(Total Petroleum Hydrocarbon) effectively by using method low thermal desorption. The thermal desorption is frequently selected because it can treat various contaminants effectively. The temperature and heating time are determined by TGA(Thermogravimetric analysis) curve. The experiment result from this research, removal rate of BTEX was up to 100% within 5 minutes and removal rates of TPH were more than 65% at $300^{\circ}C$ and 70% at $500^{\circ}C$ respectively. It was observed that there was a little change of removal rates of TPH.

Spectroscopic Characterization of Wood Surface Treated by Low-Temperature Heating (저온 열처리 목재 표면의 분광학적 특성)

  • Kim, Kang-Jae;Nah, Gi-Baek;Ryu, Ji-Ae;Eom, Tae-Jin
    • Journal of the Korean Wood Science and Technology
    • /
    • v.46 no.3
    • /
    • pp.285-296
    • /
    • 2018
  • As a study for the verification of heat treated wood according to ISPM No. 15, the spectroscopic characteristics of the heat treated wood surface were analyzed. Various functional groups were observed on the IR spectrum, but it was difficult to find any particular difference between wood species, heat treatment time and storage period. HBI (hydrogen-bonding intensity) shows the change of the heat treated wood according to the storage time, but the change of wood with the heat treatment time was hard to be observed. On the PCA score plot, however, it was possible to sort the wood according to the heat treatment time of 60 minutes or 90 minutes in the species. The standards for classification of heat-treated wood in PCA were aromatic rings in lignin and C-H bending in cellulose, and these components were able to classify heat-treated wood by ISPM No. 15.

Wall Superheat Effect on Single Bubble Growth During Nucleate Boiling at Saturated Pool (풀 핵비등시 단일 기포 성장에 대한 벽면 과열도의 영향에 관한 연구)

  • Kim Jeong bae;Lee Han Choon;Kim Moo Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.5 s.236
    • /
    • pp.633-642
    • /
    • 2005
  • Nucleate pool boiling experiments for R11 under a constant wall temperature condition were carried out. A microscale heater array was used for the heating and the measurement of high temporal and spatial resolution by the Wheatstone bridge circuit. Very sensitive heat flow rate data were obtained by the control for the surface condition with high time resolution. The measured heat flow rate shows a discernable peak at the initial growth stage and reaches an almost constant value. In the thermal growth region, bubble shows a growth proportional to $t^{\frac{1}{5}}$. The bubble growth behavior is analyzed with a dimensionless parameter to compare with the previous results in the same scale. As the wall superheat increases, the departure diameter and the departure time increase, and the waiting time decreases. But the asymptotic growth rate is not affected by the wall superheat change. The effect of the wall superheat is resolved into the suggested growth equation. Dimensionless parameters of time and bubble radius characterize the thermal growth behavior well, irrespective of wall condition. The comparison between the result of this study and the previous results shows a good agreement at the thermal growth region. The quantitative analysis for the heat transfer mechanism is conducted with the measured heat flow rate behavior and the bubble growth behavior. The required heat flow rate for the volume change of the observed bubble is about twice as much as the instantaneous heat flow rate supplied from the wall.