DOI QR코드

DOI QR Code

Temperature Distribution of Wet-Mixed High Strength Sprayed Polymer Mortar for Fire Resistance of Tunnel

터널 내화용 고강도 습식 스프레이 폴리머 모르타르의 화재 발생시 내부온도분포

  • 원종필 (건국대학교 사회환경시스템공학과) ;
  • 최석원 (건국대학교 대학원) ;
  • 박찬기 (건국대학교) ;
  • 박해균 (삼성물산(주) 건설부문 토목사업본부 토목기술팀)
  • Received : 2006.02.27
  • Accepted : 2006.06.07
  • Published : 2006.07.31

Abstract

Concrete has advantages in fire situations as it is non-combustible and has low thermal conductivity. However, concrete that is not designed against fire can experience significant explosive spalling from the build-up of pore pressures and internal tensile stresses when heated. In this study, the performance of wet-mixed high strength sprayed polymer mortar for fire resistance of tunnel system was evaluated by experimentally and numerically. The fire test was performed in fire resistance(electric) furnace according to RABT(Richtlinien fur die Ausstatung und den Betrieb von $Stra{\beta}entunneln$) time heating temperature curve, so as to evaluate the temperature distribution with cover thickness of wet-mixed high strength sprayed polymer mortar for fire resistance of tunnel system. Based on experimental results and numerical analysis, the proper cover thickness of wet-mixed high strength sprayed polymer mortar determined the more than 4cm.

콘크리트는 열전도열이 작은 불연성의 재료이다. 그렇지만 콘크리트는 화재에 저항하도록 설계되지 않으면 열을 받을시 공극압과 내부인장응력이 발생하여 폭렬이 발생한다. 본 연구에서는 터널 내화용 습식 고강도 스프레이 폴리머 모르타르의 성능을 실험적 및 수치해석적으로 평가하였다. 이를 위하여 화재시험을 수행하였다. 시험은 RABT 온도가열곡선을 이용하여 내화로에서 수행하였으며, 터널 내화용 습식 스프레이 모르타르의 피복두께에 따른 온도분포를 평가하였다. 실험 및 수치해석적 분석 결과를 기본으로 하여 터널 내화용 습식 고강도 스프레이 폴리머 모르타르의 적정 피복두께는 4cm이상으로 결정하였다.

Keywords

References

  1. 박시헌, 오혁희, 오상직(2003) 대구지하철 화재구간에 대한 정밀안전진단, 대한토목학회지, 대한토목학회, 제51권 제11호, pp. 41-48
  2. Ahmed, G. N. and Hurst, J. P. (1997) An analytical approach for investigating the causes of spalling of high-strength concrete at elevated temperatures, Proceedings of the International Workshop on Fire Performance of High-Strength Concrete, NIST Special Publication 919, pp. 95- 108
  3. Gabriel, A. K. (2003) Passive fire protection in tunnel, Concrete for the Construction Industry, Vol. 37, No. 2, pp. 31-36
  4. Haukur, I. and Anders, L. (2004) Recent Achievents Regarding Measuring of Time-Heat and Time-Temperature Development in Tunnel, Safe & Tunnels, First International Symposium, Prague, pp. 87-96
  5. Hj, N. P. (2004) Hazards in Tunnels Structural Integrity, Safe & Tunnels, First International Symposium, Prague, pp. 61-72
  6. ITA Working group No. 6 (2004) Maintenance and repair, Guidelines for structural fire resistance for road tunnels, ITA
  7. Kodur, V. K. R., Bilodeau. A., and Hoff, G. C. (2004) Optimization of the type and amount of polypropylene fibres for preventing the spalling of lightweight concrete subjected to hydrocarbon fire, Cement & Concrete Composites, Vol. 26, Issue 2, pp. 163-174 https://doi.org/10.1016/S0958-9465(03)00085-4
  8. Persson, B. (2004) Self-Compacting Concrete at Fire Temperatures, TVBM-3110, Lund Institute of Technology Division of Building Materials, Box 118 SE-22100 Lund, Sweden
  9. Pierre, K., Gregoire, C., and Christophe, G. (2001) High-temperature behaviour of HPC with polypropylene fiber from spalling to microstructure, Cement & Concrete Research, Vol. 31, pp. 1487-1499 https://doi.org/10.1016/S0008-8846(01)00596-8
  10. Tomasson, B. (1998) High Performance Concrete Design Guide Lines, Report 5008, Department of Fire Safety Engineering, Lund Institute of Technology. Lund University, Box 118, S 210 00 Lund, SWEDEN