• Title/Summary/Keyword: heating energy

검색결과 3,227건 처리시간 0.025초

변전소 구조물의 에너지파일 시스템 적용성 연구 (A Sutdy on the Apllicability of the Energy Pile System on Substation)

  • 이대수;오기대;이강렬
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 춘계학술대회 초록집
    • /
    • pp.198-198
    • /
    • 2011
  • Cooling and Heating system using Geothermal energy in the country has shown rapid development in the research and business field during about 10 years. However, like other renewable energy sources, high initial construction cost is acting as an obstacle to apply widely. Therefore Energy pile system(Heat Exchanger inserted inside the structure pile) that can save about 25 % initial construction cost has been studied in European countries and recently being studied in our country. Therefore, KPECO(Korea Electric Power Corporation) is also studying energy pile system to improve cooling & heating system in substation that install about 200 pile. KPECO is aimed to make energy pile design, construction and maintenance standards because substation has good applicability. In this study, we studied to make new grout material and design program to make optimized design & counstruction method of energy pile system. And planing to peform field test for energy pile system in a 154 kV substation to obtain long-term behavior and efficiency of the system.

  • PDF

에너지슬래브 적용 지열원 열펌프 시스템의 성능 특성에 관한 실증 연구 (Heating and Cooling Performance of a Ground Coupled Heat Pump System with Energy-Slab)

  • 최종민
    • 설비공학논문집
    • /
    • 제24권2호
    • /
    • pp.196-203
    • /
    • 2012
  • Energy foundations and other thermo-active ground structure, energy wells, energy-slab, and pavement heating and cooling represent an innovative technology that contributes to environmental protection and provides substantial long-term cost savings and minimized maintenance. This paper focuses on earth-contact concrete elements that are already required for structural reasons, but which simultaneously work as heat exchangers. Pipes, energy slabs, filled with a heat carrier fluid are installed under conventional structural elements, forming the primary circuit of a geothermal energy system. The natural ground temperature is used as a heat source in winter and a heat sink in summer. The geothermal heat pump system with energy-slab represented very high heating and cooling performance due to the stability of EWT from energy slab. However, the performance of it seemed to be affected by the atmospheric air temperature.

공동주택에서 바닥복사 난방시스템의 실별 제어에 관한 연구 (A Study on the Individual Room Control of Radiant Floor Heating System in Apartment Buildings)

  • 김오봉;이미경;김광우;여명석
    • 설비공학논문집
    • /
    • 제16권5호
    • /
    • pp.421-429
    • /
    • 2004
  • In Korea, the radiant heating system has been widely used as a residential heating method, which has been modernized to use hot water running into the tubes embedded in the floor structure. According to the recent improvement of living standard of residential buildings, the requirement of the thermal comfort and energy saving in heating system has been raised. Until now, the radiant floor heating system has been controlled by room thermostat installed in the living room, but for better thermal comfort, an individual room control method is adopted as an alternative. Therefore, it is necessary to evaluate the control performance between the current control method and the individual room control method. In this study, the control performance between the two systems is evaluated through the field experiment. And the control performances of room air temperature and energy performances are analyzed through the simulation using TRNSYS. Firstly, the simulations are performed in the various outdoor conditions and the flow rates and the simulation results are analyzed for the control performances. Also, to evaluate the energy performance, the simulations are performed under the operating conditions in which the set-point of the room air temperature is fixed or changed according to the schedule of occupancy, and the simulation results are analyzed between the two methods.

온실(溫室) 난방(暖房)을 위한 태양열(太陽熱)-지하(地下) 잠열(潛熱) 축열(蓄熱) 시스템 개발(開發) (Development of Solar Energy-Underground Latent Heat Storage System for Greenhouse Heating)

  • 송현갑;류영선
    • Journal of Biosystems Engineering
    • /
    • 제19권3호
    • /
    • pp.211-221
    • /
    • 1994
  • In this study, to maximize the solar energy utilization for greenhouse heating during the winter season, solar energy-underground latent heat storage system was constructed, and the thermal performance of the system has been analyzed to obtain the basic data for realization of greenhouse solar heating system. The results are summarized as follows. 1. $Na_2SO_4{\cdot}10H_20$ was selected as a latent heat storage material, its physical properties were stabilized and the phase change temperature was controlled at $13{\sim}15^{\circ}C$. 2. Solar radiation of winter season was the lowest value in December, and Jinju area was the highest and the lowest value was shown in Jeju area. 3. The minimum inner air temperature of greenhouse with latent heat storage system(LHSS) was $7.0{\sim}7.5^{\circ}C$ higher than that of greenhouse without LHSS and was $7.0{\sim}11.2^{\circ}C$ higher than the minimum ambient air temperature. 4. Greenhouse heating effect of latent heat storage system was getting higher according to the increase of solar radiation and was not concerned with the variation of minimum ambient air temperature. 5. The relative humidity of greenhouse with latent heat storage system was varied from 50 to 85%, but that of greenhouse without LHSS was varied from 30 to 93%. 6. The heating cost of greenhouse with solar energy-latent heat storage system was about 24% of that with the kerosene heating system.

  • PDF

냉방시스템에서 생산된 냉기의 가격배분 방법론 제안 (A Suggestion for the Cost Allocation Methodology of Cool Air Produced from Cooling System)

  • 김덕진
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 동계학술발표대회 논문집
    • /
    • pp.499-504
    • /
    • 2008
  • Our government will make a plan regulating the cooling limit temperature of the summer season to 26 degree and the heating limit temperature of the winter season to 20 degree for energy saving. Where, the key point of this politic pursuit can be the charge system on heating and cooling cost. We have suggested new cost allocation methodology as a worth evaluation method in the precedent study, and preformed the worth evaluation and cost allocation on four kind of warm air produced from a heating system as an example. In this study, we applied the suggested method to four kind of cooling air as an example, and preformed the worth evaluation and cost allocation on each cooling air. As a result, similarly to the precedent study, the more energy a customer saved, the more heating unit cost decreased, and the more energy a customer consumed, the more heating unit cost increased. From this analysis, we hope that the suggested methodology can offer a theoretical basis to the politic pursuit of government, and induce the spontaneous energy saving of consumers.

  • PDF

OEMGD 알고리즘을 이용한 건물 냉난방용 최적 에너지 믹스 모델에 관한 연구 - 지열히트펌프와 지역냉난방 시스템을 중심으로 (A Study on the Optimal Energy Mix Model in Buildings with OEMGD Algorithm Focusing on Ground Source Heat Pump and District Heating & Cooling System)

  • 이기창;홍준희;이규건
    • 한국지역사회생활과학회지
    • /
    • 제27권2호
    • /
    • pp.281-294
    • /
    • 2016
  • This study was conducted to promote consumer interest in Geothermal Heat Pump (Ground Source Heat Pump, GSHP) and district heating and cooling (District Heating & Cooling, DHC) systems, which are competing with each other in the heating and cooling field. Considering not only the required cost data of energy itself, but also external influence factors, the optimal mix ratio of these two energy systems was studied as follows. The quantitative data of the two energy systems was entered into a database and the non-quantitative factors of external influence were applied in the form of coefficients. Considering both of these factors, the optimal mix ratio of GSHP and DHC systems and minimum Life Cycle Cost (LCC) were obtained using an algorithm model design. The Optimal Energy Mix of GSHP & DHC (OEMGD) algorithm was developed using a software program (Octave 4.0). The numerical result was able to reflect the variety of external influence factors through the OEMGD algorithm. The OEMGD model found that the DHC system is more economical than the GSHP system and was able to represent the optimal energy mix ratio and LCC of mixed energy systems according to changes in the external influences. The OEMGD algorithm could be of help to improve the consumers' experience and rationalize their energy usage.

Hybrid thermal seasonal storage and solar assisted geothermal heat pump systems for greenhouses

  • Ataei, Abtin;Hemmatabady, Hoofar;Nobakht, Seyed Yahya
    • Advances in Energy Research
    • /
    • 제4권1호
    • /
    • pp.87-106
    • /
    • 2016
  • In this research, optimum design of the combined solar collector, geothermal heat pump and thermal seasonal storage system for heating and cooling a sample greenhouse is studied. In order to optimize the system from technical point of view some new control strategies and functions resulting from important TRNSYS output diagrams are presented. Temperatures of ground, rock bed storage, outlet ground heat exchanger fluid and entering fluid to the evaporator specify our strategies. Optimal heat storage is done with maximum efficiency and minimum loss. Mean seasonal heating and cooling COPs of 4.92 and 7.14 are achieved in series mode as there is no need to start the heat pump sometimes. Furthermore, optimal parallel operation of the storage and the heat pump is studied by applying the same control strategies. Although the aforementioned system has higher mean seasonal heating and cooling COPs (4.96 and 7.18 respectively) and lower initial cost, it requires higher amounts of auxiliary energy either. Soil temperature around ground heat exchanger will also increase up to $1.5^{\circ}C$ after 2 years of operation as a result of seasonal storage. At the end, the optimum combined system is chosen by trade-off between technical and economic issues.

빌딩 구조체 활용 지열원 열펌프 시스템의 냉난방성능 특성 (Heating and Cooling Performance Characteristics of Ground Source Heat Pump System Utilizing Building Structures as Heat Source and Sink)

  • 김남태;최종민;손병후;백성권;이동철;양희정
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 추계학술대회 초록집
    • /
    • pp.143.2-143.2
    • /
    • 2011
  • Energy foundations and other thermo-active ground structure, energy wells, energy slab, and pavement heating and cooling represent an innovative technology that contributes to environmental protection and provides substantial long-term cost savings and minimized maintenance. This paper focuses on earth-contact concrete elements that are already required for structural reasons, but which simultaneously work as heat exchangers. Pipes, energy slabs, filled with a heat carrier fluid are installed under conventional structural elements, forming the primary circuit of a geothermal energy system. The natural ground temperature is used as a heat source in winter and heat sink in summer season. The system represented very high heating and cooling performance due to the stability of EWT from energy slab. Maximum heat pump unit COP and system COP were 4.9 and 4.3.

  • PDF

건축물 설계변수의 상관관계 분석을 통한 CO2 배출저감 방안 (A CO2 Emission Reduction Method through Correlation Analysis of Design Parameters in Buildings)

  • 이현우;채민수
    • 한국태양에너지학회 논문집
    • /
    • 제31권1호
    • /
    • pp.100-106
    • /
    • 2011
  • This study proposes a $CO_2$ emission reduction method through correlation analysis of a sample building. First, energy saving factors of heating, cooling, lighting were determined for the correlation analysis and $CO_2$ emission contribution rate of the design parameters have been analyzed. Then optimal combination of each design parameter has been drawn. Heat transfer coefficient of walls and windows, air permeability, windows area ratio, and shading devices were selected as applicable energy saving factors of the sample building. Also computer simulation was conducted using experimental design by Orthogonal Arrays of the statistical method. And the contribution rate was estimated by Analysis of Variance-ANOVA. As a result, the $CO_2$ emission in heating was reduced to 51.9%; in cooling to 16.8%; and in lighting to 2% compared to the existing building. The majority of the reduction was presented by heating energy.

On-the-fly energy release per fission model in STREAM with explicit neutron and photon heating

  • Nhan Nguyen Trong Mai;Woonghee Lee;Kyeongwon Kim;Bamidele Ebiwonjumi;Wonkyeong Kim;Deokjung Lee
    • Nuclear Engineering and Technology
    • /
    • 제55권3호
    • /
    • pp.1071-1083
    • /
    • 2023
  • The on-the-fly energy release per fission (OTFK) model is implemented in STREAM to continuously update the Kappa values during the depletion calculation. The explicit neutron and photon energy distribution, which has not been considered in previous STREAM versions, is incorporated into the existing on-the-fly model. The impacts of the modified OTFK model with explicit neutron and photon heating in STREAM on the power distribution, fuel temperature, and other core parameters during depletion with feedback calculations are studied using several problems from the VERA benchmark suit. Overall, the explicit heating calculation provides a better power map for the feedback calculations particularly when strong gamma emitters are present. Generally, the fuel temperature decreases when neutron and photon heating is employed because fission neutrons and gamma rays are transported away from their points of generation. This energy release model in STREAM indicates that gamma energy accounts for approximately 9.5%-10% of the total energy released, and approximately 2.4%-2.6% of the total energy released will be deposited in the coolant for the VERA 5, NuScale, and Yonggwang Unit 3 2D cores.