DOI QR코드

DOI QR Code

On-the-fly energy release per fission model in STREAM with explicit neutron and photon heating

  • Nhan Nguyen Trong Mai (Department of Nuclear Engineering, Ulsan National Institute of Science and Technology) ;
  • Woonghee Lee (Department of Nuclear Engineering, Ulsan National Institute of Science and Technology) ;
  • Kyeongwon Kim (Department of Nuclear Engineering, Ulsan National Institute of Science and Technology) ;
  • Bamidele Ebiwonjumi (Department of Nuclear Engineering, Ulsan National Institute of Science and Technology) ;
  • Wonkyeong Kim (Department of Nuclear Engineering, Ulsan National Institute of Science and Technology) ;
  • Deokjung Lee (Department of Nuclear Engineering, Ulsan National Institute of Science and Technology)
  • Received : 2022.08.30
  • Accepted : 2022.11.06
  • Published : 2023.03.25

Abstract

The on-the-fly energy release per fission (OTFK) model is implemented in STREAM to continuously update the Kappa values during the depletion calculation. The explicit neutron and photon energy distribution, which has not been considered in previous STREAM versions, is incorporated into the existing on-the-fly model. The impacts of the modified OTFK model with explicit neutron and photon heating in STREAM on the power distribution, fuel temperature, and other core parameters during depletion with feedback calculations are studied using several problems from the VERA benchmark suit. Overall, the explicit heating calculation provides a better power map for the feedback calculations particularly when strong gamma emitters are present. Generally, the fuel temperature decreases when neutron and photon heating is employed because fission neutrons and gamma rays are transported away from their points of generation. This energy release model in STREAM indicates that gamma energy accounts for approximately 9.5%-10% of the total energy released, and approximately 2.4%-2.6% of the total energy released will be deposited in the coolant for the VERA 5, NuScale, and Yonggwang Unit 3 2D cores.

Keywords

Acknowledgement

This work was partially supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. NRF-2019M2D2A1A03058371). This work was also partially supported by the project (L20S089000) by Korea Hydro & Nuclear Power Co. Ltd..

References

  1. J. Sterbentz, Q-Value (MeV/fission) Determination for the Advanced Test Reactor, Idaho National Laboratory (INL), 2013. No. INL/EXT-13-29256.
  2. D.P. Griesheimer, S.J. Douglass, M.H. Stedry, Self-consistent energy normalization for quasistatic reactor calculations, Journal of Nuclear Engineering 2 (2) (2021) 215-224. https://doi.org/10.3390/jne2020020
  3. L. Ghasabyan, K. Mikityuk, J. Krepel, S. Pelloni, Use of SERPENT Monte-Carlo code for development of 3D full-core models of Gen-IV fast spectrum reactors and preparation of safety parameters/cross-section data for transient analysis with FAST code system, in: Proceedings of the International Conference on Fast Reactors and Related Fuel Cycles: Safe Technologies and Sustainable Scenarios (FR13), 2013. Paris, March.
  4. K.S. Kim, K.T. Clarno, Y. Liu, et al., Neutron Capture Energies for Flux Normalization and Approximate Model for Gamma-Smeared Power, Oak Ridge National Lab (ORNL), 2018. No. ORNL/SPR-2017/471.
  5. J. Rhodes, K. Smith, Z. Xu, CASMO-5 energy release per fission model, in: Proceedings of PHYSOR2008, 2008. Switzerland. September 14-19.
  6. J. Rhodes, K. Smith, D. Lee, CASMO-5 development and applications, in: Proceedings of the PHYSOR-2006 Conference, ANS Topical Meeting on Reactor Physics, Canada, Vancouver, BC, 2006.
  7. M.B. Chadwick, M. Herman, P. Oblozinsky, et al., ENDF/B-VII. 1 nuclear data for science and technology: cross sections, covariances, fission product yields and decay data, Nucl. Data Sheets 112 (12) (2011) 2887-2996. https://doi.org/10.1016/j.nds.2011.11.002
  8. S. Choi, D. Lee, Three-dimensional method of characteristics/diamond-difference transport analysis method in STREAM for whole-core neutron transport calculation, Comput. Phys. Commun. 260 (2021), 107332.
  9. S. Choi, W. Kim, J. Choe, et al., Development of high-fidelity neutron transport code STREAM, Comput. Phys. Commun. 264 (2021), 107915.
  10. J. Leppanen, T. Kaltiaisenaho, V. Valtavirta, M. Metsala, Development of a coupled neutron/photon transport mode in the serpent 2 Monte Carlo code, in: International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering, M&C, Jeju, Korea, 2017. April 16-20.
  11. C. Liegeard, A. Calloo, G. Marleau, E. Girardi, Impact of photon transport on power distribution, in: Proceedings of the International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering, M&C 2017, Jeju, Korea, 2017. April 16-20.
  12. AREVA NP INC, The ARCADIA® reactor analysis system for PWRs methodology description and benchmarking results, Tech. rep (2010) 10-11. Areva NP Inc, March.
  13. Y. Liu, R. Salko, K.S. Kim, et al., Improved MPACT energy deposition and explicit heat generation coupling with CTF, Ann. Nucl. Energy 152 (2021), 107999.
  14. B.A. Lindley, J.G. Hosking, P.J. Smith, et al., Current status of the reactor physics code WIMS and recent developments, Ann. Nucl. Energy 102 (2017) 148-157. https://doi.org/10.1016/j.anucene.2016.09.013
  15. S. Jae, N. Choi, H.G. Joo, Implementation and verification of explicit treatment of neutron/photon heating in nTRACER, in: Proceedings of ICAPP 2020, Abu Dhabi, UAE, 2020. March 15-19.
  16. R. Tuominen, V. Valtavirta, J. Leppanen, New energy deposition treatment in the Serpent 2 Monte Carlo transport code, Ann. Nucl. Energy 129 (2019) 224-232. https://doi.org/10.1016/j.anucene.2019.02.003
  17. OpenMC Theory and Methodology https://docs.openmc.org/en/stable/methods/index.html.
  18. T. Goorley, M. James, T. Booth, et al., Initial MCNP6 release overview, Nucl. Tech. 180 (3) (2012) 298-315. https://doi.org/10.13182/NT11-135
  19. D.H. Lee, J.S. Kim, S.K. Lim, H.J. Shim, McCARD gamma transport analysis for RFNC photon spectrum benchmark, in: Transactions of the Korean Nuclear Society Autumn Meeting, 2018. Yeosu, Korea, October 25-26.
  20. M. Lemaire, H. Lee, P. Zhang, D. Lee, Interpretation of two SINBAD photon-leakage benchmarks with nuclear library ENDF/B-VIII. 0 and Monte Carlo code MCS, Nucl. Eng. Technol. 52 (7) (2020) 1355-1366. https://doi.org/10.1016/j.net.2019.12.014
  21. F.B. Brown, R.D. Mosteller, W.R. Martin, Monte Carlo-Advances and Challenges, Los Alamos National Lab (LANL), Los Alamos, NM (United States), 2008. LA-UR-08-05891.
  22. N.N.T. Mai, K. Kim, M. Lemaire, et al., Analysis of several VERA benchmark problems with the photon transport capability of STREAM, Nucl. Eng. Technol. 54 (7) (2022) 2670-2689. https://doi.org/10.1016/j.net.2022.02.004
  23. A.T. Godfrey, VERA Core Physics Benchmark Progression Problem Specifications, CASL Technical Report: CASL-U-2012-0131-004, 2014.
  24. B. Ebiwonjumi, S. Choi, M. Lemaire, D. Lee, H.C. Shin, Validation of lattice physics code STREAM for predicting pressurized water reactor spent nuclear fuel isotopic inventory, Ann. Nucl. Energy 120 (2018) 431-449. https://doi.org/10.1016/j.anucene.2018.06.002
  25. B. Ebiwonjumi, S. Choi, M. Lemaire, et al., Verification and validation of radiation source term capabilities in STREAM, Ann. Nucl. Energy 124 (2019) 80-87. https://doi.org/10.1016/j.anucene.2018.09.034
  26. NuScale Plant Design Overview, U.S. Nuclear Regulatory Commission, 2012. NP-ER-0000-1198.
  27. S.K. Lee, et al., Nuclear Design Report for Yonggwang Unit 3, Cycle 1, Korea Atomic Energy Research Institute (KAERI), 1995. September.
  28. R. Sher, C. Beck, Fission-energy Release for 16 Fissioning Nuclides. Final Report (No. EPRI-NP-1771). Stanford Univ., Dept. of Mechanical Engineering, CA (USA), 1981.
  29. A. Trkov, D.A. Brown, ENDF-6 Formats Manual: Data Formats and Procedures for the Evaluated Nuclear Data Files (No. BNL-203218-2018-INRE), Brookhaven National Lab.(BNL), Upton, NY (United States), 2018.
  30. K. Kim, M. Lemaire, N.N.T. Mai, et al., Generation of a multigroup gamma production and photon transport library for STREAM, in: Transactions of the Korean Nuclear Society Virtual Spring Meeting, 2020. July 09-10.
  31. A.C. Kahler III, R. Macfarlane, NJOY2016, Los Alamos National Lab (LANL), 2016, Los Alamos, NM (United States), No. NJOY, NJOY16; 005075MLTPL00.
  32. H. Lee, W. Kim, P. Zhang, M. Lemaire, et al., Mcs - a Monte Carlo particle transport code for large-scale power reactor analysis, Ann. Nucl. Energy 139 (2020), 107276.
  33. X. Wang, Y. Liu, W. Martin, et al., Energy deposition analysis for VERA progression problems by MCNP, in: Proceedings of PHYSOR 2018, Cancun, Mexico, 2018.
  34. D.A. Brown, M.B. Chadwick, R. Capote, et al., ENDF/B-VIII. 0: the 8th major release of the nuclear reaction data library with CIELO-project cross sections, new standards and thermal scattering data, Nucl. Data Sheets 148 (2018) 1-142. https://doi.org/10.1016/j.nds.2018.02.001
  35. S. Choi, C. Lee, D. Lee, Resonance treatment using pin-based pointwise energy slowing-down method, J. Comput. Phys. 330 (2017) 134-155. https://doi.org/10.1016/j.jcp.2016.11.007
  36. S. Kinast, D. Tomatis, Energy deposition in coolant of PWR under normal operation and accident conditions, Nucl. Eng. Des. 384 (2021), 111479.
  37. D. Lee, J. Rhodes, K. Smith, Quadratic depletion method for gadolinium isotopes in CASMO-5, Nucl. Sci. Eng. 174 (1) (2013) 79-86. https://doi.org/10.13182/NSE12-20
  38. J. Jang, B. Ebiwonjumi, W. Kim, et al., Validation of spent nuclear fuel decay heat calculation by a two-step method, Nucl. Eng. Technol. 53 (1) (2021) 44-60. https://doi.org/10.1016/j.net.2020.06.028
  39. Swedish Nuclear Fuel and Waste Management Company. Measurements of Decay Heat in Spent Nuclear Fuel at the Swedish Central Interim Storage Facility, Clab. ISSN 1402-3091. SKB Rapport R-05-62.
  40. I.C. Gauld, G. Ilas, B.D. Murphy, C.F. Weber, Validation of SCALE 5 Decay Heat Predictions for LWR Spent Nuclear Fuel. Nuclear Regulatory Commission report (ORNL/TM-2006/13).