• Title/Summary/Keyword: heating capacity

Search Result 677, Processing Time 0.033 seconds

Rheology and Strength Properties Improvement of Recycle Cement by Admixture (혼화재료에 의한 재생시멘트의 레올로지 및 강도특성 개선)

  • 오상균;임승준;김정길
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2003.05a
    • /
    • pp.89-94
    • /
    • 2003
  • Recently, the study to reduce and recycle industrial waste is underway vigorously in the various fields of industry according to the conservation of environment and resources. In construction work, the disposal problem of its waste and environmental disruption have already been serious all over the world. However the recycle of waste concrete is still at an early stage, recycled aggregate from waste concrete have only used those as subsidiary road fillers. The research institute and the company make the study that it is about the properties of recycled aggregate and those structural capacity since 1990. Through the experimentation last year, we know that strength and fluidity of recycle cement are inferior to normal cement, and admixing aggregate powder deteriorates its strength. The purpose of this study is to search for appropriate heating time and to improve performance of the recycle cement while heating hardened cement which is crushed, we investigate separating aggregate from hardened cement by preheating and improvement of strength and fluidity inrecycle cement which contains admixture.

  • PDF

Post-heating behavior of concrete beams reinforced with fiber reinforced polymer bars

  • Irshidat, Mohammad R.;Haddad, Rami H.;Almahmoud, Hanadi
    • Structural Engineering and Mechanics
    • /
    • v.53 no.6
    • /
    • pp.1253-1269
    • /
    • 2015
  • The present paper investigates the post heating behavior of concrete beams reinforced with fiber reinforced polymer (FRP) bars, namely carbon fiber reinforced polymer (CFRP) bars and glass fiber reinforced polymer (GFRP) bars. Thirty rectangular concrete beams were prepared and cured for 28 days. Then, beams were either subjected (in duplicates) to elevated temperatures in the range (100 to $500^{\circ}C$) or left at room temperature before tested under four point loading for flexural response. Experimental results showed that beams, reinforced with CFRP and GFRP bars and subjected to temperatures below $300^{\circ}C$, showed better mechanical performance than that of corresponding ones with conventional reinforcing steel bars. The results also revealed that ultimate load capacity and stiffness pertaining to beams with FRP reinforcement decreased, yet their ultimate deflection and toughness increased with higher temperatures. All beams reinforced with FRP materials, except those post-heated to $500^{\circ}C$, failed by concrete crushing followed by tension failure of FRP bars.

Performance Analysis of Water/Air Direct Contact Air Conditioning System (물-공기 직접접촉식 공기조화장치의 성능해석)

  • 유성연;권화길;김광영
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.2
    • /
    • pp.175-183
    • /
    • 2004
  • Performance of the water/air direct contact air conditioning system, in which heat and mass are directly transferred between air and water droplet, is simulated using semi-empirical method. Direct contact system improves transport efficiency compared to conventional indirect contact system. In this study, correlations for h$_{c}$A / c$_{pm}$ which represent the capacity of direct contact system are derived as a function of air and water flowrate from the experimental data. Cooling and heating performance of the water/air direct contact air conditioning system are evaluated using these correlations.ons.

The Behavior of Fire Damaged High Strength SRC Columns with Polypropylene Fiber (PP섬유 혼입 고강도 SRC 기둥의 화재 후 거동)

  • Choi, Eun-Gyu;Jung, Hye-Won;Shin, Yeong-Soo;Lee, Cha-Don;Kwon, Young-Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.33-36
    • /
    • 2006
  • The purpose of this paper is to investigate the structural behavior of fire damaged high-strength SRC columns with polypropylene fiber. When high-strength concrete is exposed to high temperature, spalling is occurred then it leads to decrease the capacity of members. Polypropylene fiber is used to reduce the spalling of the specimens and the distinction in the behavior after fire is observed. High-strength concrete specimens were exposed to high temperatures by the ISO 834 curve. Main experimental parameters were the ratio of the contained polypropylene fiver, heating time and type of loading. Reduction rate in residual strength and stiffness is observed for the mixing of PP fiber, the heating time and eccentricity of loading.

  • PDF

Development of an Optimum Void Detection Chart using Heat Transfer Simulation (열전달 시뮬레이션을 통한 최적공극탐지 차트개발)

  • Choi, Hyun-Ho;Park, Jin-Hyung;Ji, Goang-Seup
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.241-244
    • /
    • 2006
  • It is essential to develop a large capacity, non-contact nondestructive inspection system having high reliability to investigate repaired and strengthened structures. Nowadays, an infrared camera is widely used in non-contact nondestructive inspection system. Because an infrared camera is sensitive to the surrounding environment, it is necessary to improve a sensitivity of thermal image information and a relationship between defects and thermal image information. In this papaer, presented is an optimum void detection chart for the optimum conditions to detect infrared rays from inside and outside defects like voids and cracks in concrete structures using extensive computer simulation. Sensitivity studies are performed with respect to variables influencing the temperature distribution such as heating temperature, heating time, and geometries of defect, etc. It may be stated that it could be successfully utilized for the non-contact nondestructive inspection system to detect defects in concrete structures.

  • PDF

Cooling-Heating System Using Thermoelectric Module and Parallel Flow Type Pulsating Heat Pipe

  • Kim Jeong-Hoon;Im Yong-Bin;Lee Seong-Ho;Lee Euk-Soo;Kim Jong-Soo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.13 no.4
    • /
    • pp.217-224
    • /
    • 2005
  • The purpose of this study was to develop a cooler/heater using a thermoelectric module combined with a parallel flow type pulsating heat pipe with R-142b as a working fluid. The experiment was performed for 16 thermoelectric modules (6A/15V, size: $40\times40\times4mm$), varying design parameters of the heat pipe (inclination angle, working fluid charging ratio, etc.). Experimental results indicate that the optimum charging ratio and the inclination angle of the parallel flow type pulsating heat pipe were $30\%$ by volume and $30^{\circ}$, respectively. The maximum cooler/heater capacity were 479 W (COP: 0.47) and 630 W (COP: 0.9), respectively.

An Analysis of the Outdoor Design Conditions for Heating and Air Conditioning in Korea (한국의 냉난방 설계용 외기조건 분석)

  • Bang, Gyu-Won
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.14 no.4
    • /
    • pp.322-356
    • /
    • 1985
  • The outdoor design conditions for summer and winter are basic data required for determining the heating and cooling loads and HVAC equipment capacity. The latest study reported was based on the 1960's weather data, which is widely used by HVAC design engineers in Korea. The purpose of this paper is to update the outdoor design conditions for HVAC loads and equipments based on the weather data for the 1970's. The weather conditions of 24 sites, namely Sokcho, Chuncheon, Gangreung, Seoul, Inchon, Ulreungdo, Suweon, Seosan, Cheongju, Daejeon, Chupungryeong, Pohang, Gunsan, Daegu, Jeonju, Ulsan, Kwangju, Busan, Chungmu, Mokpo, Yeosu, Jeju, Seogwipo, and Jinju have been analyzed to calculate the outdoor design conditions. This analys is performed on the basis of TAC $1\%,\;TAC\;2.5\%,\;and\;TAC\;5\%$.

  • PDF

Metal Biosorption by Surface-Layer Proteins from Bacillus Species

  • Allievi, Mariana Claudia;Florencia, Sabbione;Mariano, Prado-Acosta;Mercedes, Palomino Maria;Ruzal, Sandra M.;Carmen, Sanchez-Rivas
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.2
    • /
    • pp.147-153
    • /
    • 2011
  • Bacillus species have been involved in metal association as biosorbents, but there is not a clear understanding of this chelating property. In order to evaluate this metal chelating capacity, cultures and spores from Grampositive bacteria of species either able or unable to produce surface layer proteins (S-layers) were analyzed for their capacity of copper biosorption. Only those endowed of S-layers, like Bacillus sphaericus and B. thuringiensis, showed a significant biosorption capacity. This capacity (nearly 50%) was retained after heating of cultures, thus supporting that structural elements of the envelopes are responsible for such activity. Purified S-layers from two Bacillus sphaericus strains had the ability to biosorb copper. Copper biosorption parameters were determined for strain B. sphaericus 2362, and after analyses by means of the Langmuir model, the affinity and capacity were shown to be comparable to other bacterial biosorbents. A competitive effect of $Ca^{2+}$ and $Zn^{2+}$, but not of $Cd^{2+}$, was also observed, thus indicating that other cations may be biosorbed by this protein. Spores that have been shown to be proficient for copper biosorption were further analyzed for the presence of S-layer content. The retention of S-layers by these spores was clearly observed, and after extensive treatment to eliminate the S-layers, the biosorption capacity of these spores was significantly reduced. For the first time, a direct correlation between S-layer protein content and metal biosorption capacity is shown. This capacity is linked to the retention of S-layer proteins attached to Bacillus spores and cells.

Adsorption Capacity of CO2 Adsorbent with the Pretreatment Temperature (CO2 흡착제의 전처리 온도에 따른 흡착능 평가)

  • Lim, Yun-Hee;Lee, Kyung-Mi;Lee, Heon-Seok;Jo, Young-Min
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.26 no.3
    • /
    • pp.286-297
    • /
    • 2010
  • This study deals with the effect of pretreatment on the $CO_2$ adsorption capacity of zeolitic adsorbents including a commercial A-type zeolite and cation exchanged adsorbents. The pre-heating could change the intrinsic properties such as specific surface area and adsorption capacity of the adsorbent. As a result of the experiment, the moisture previously filled inside might affect the potential adsorption capacity of the adsorbent, and could be disappeared throughout the heat treatment. An optimum pretreatment temperature for the test adsorbent was found to be $400^{\circ}C$, at which temperature enabled more than 90% refreshment. Precise examination through the TPD test showed that the TSA (Temperature Swing Adsorption) process would be desirable in dry adsorption of $CO_2$.

Performance of Hygiene Management according to Capacity and Food Cost of Foodservice in Kindergartens (시설 규모 및 급식비에 따른 유치원 급식소 위생 관리 수행도)

  • Kim, Ok-Sun
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.24 no.5
    • /
    • pp.680-690
    • /
    • 2014
  • This study investigated the performance of hygiene management according to the capacity and food cost of foodservice in kindergartens as a measure of kindergartens foodservice hygiene management. Dietitians from the education office visited 50 kindergartens under the control of Dongbu District Office of Education during January, 2011. Kindergartens were 11 public and 39 private institutions. Over half of kindergartens (n=27) provided foodservice to 50~99 children. About 21 kindergartens had a foodservice cost per student per day of 2,000 won. Regarding personal hygiene, 'whether to wear an accessory or have a manicure' showed the best performance. 'Whether to have their health examined once every 6 months or keep their health records in 2 years' was rarely performed. For food materials, 'whether to buy food appropriate for the quality control standard of food materials' showed the highest performance. The highest performances for storage management of food materials and handling of food was 'whether to store goods within butlery at intervals more than 30 cm from the ground' and 'whether to heat and cook food more than $74^{\circ}C$', respectively. The highest performance for distribution of food and management of facilities was 'the hygienic management of cooking tools and facilities' and 'the proper installation of air-conditioning, heating and ventilation facilities', respectively. The results of this study show that capacity and food cost had the strongest effects on performance of personal hygiene. Especially, smaller facility size could increase performance of foodservice management.