• Title/Summary/Keyword: heating capacity

Search Result 679, Processing Time 0.033 seconds

Capacity Modulation of a Heat Pump System by Changing the Composition of Refrigerant Mixtures (혼합냉매의 성분비 조절을 통한 열펌프의 용량조절)

  • 김민성;김민수;김용찬
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.3
    • /
    • pp.258-266
    • /
    • 2000
  • Experimental investigation and cycle simulation of a capacity modulation of a heat pump system using a hydrofluorocarbon (HFC) refrigerant mixture, R32/134a as an alternative to R22, have been done. In the cycle simulation, the refrigeration system was operated by assigning the temperatures of the external heat transfer fluids with the heat exchangers generalized by an average effective temperature difference. Heating capacity, cooling capacity, and coefficient of performance (COP) of the system were investigated at several operating conditions. Experimental apparatus which had a refrigeration part and a composition changing part was built, and the performance of the heat pump system filled with R32/134a mixture was investigated. A gas-liquid separator was used in the experiment to change the composition by collecting the vapor and the liquid Phase separately, The mass fraction of the charged refrigerant in the heat pump system was 40/60 and 70/30 by weight percentage. The composition of the refrigerant with initial composition of 40/60 varied from 29/71 to 41/59 in the refrigeration cycle. For the refrigerant with initial composition of 70/30, the composition varied from 65/35 to 75/25.

  • PDF

Effects of Minimizing the Heating Space on Energy Saving and Hot Pepper(Capsicum annuum L.) Growth in the Plastic Greenhouse (온실 난방공간 최소화가 에너지 절감 및 고추 생육에 미치는 영향)

  • Tae Young Kim;Young Hoe Woo;Ill Hwan Cho;Young Sam Kwon;Si Young Lee;Han Ik Jang
    • Journal of Bio-Environment Control
    • /
    • v.10 no.4
    • /
    • pp.213-218
    • /
    • 2001
  • In 2000, domestic protected cultivation area was about 52,189 ha including 13,621 ha of heating greenhouses. Recently, heating cost accounts for 25 to 30% of total production cost which has been increased due to the rise of oil price, while the heating cost was about 15% in other advanced countries. To reduce the heating energy cost, the study of minimizing the heating space of greenhouse have been conducted from 1998 to 1999. The system was developed to control the heating space according to crop growth by moving horizontal curtain up and down. Installation of the heating space-control curtain in greenhouse decreased heating capacity to 264 m$^3$compared to 661.5 m$^3$in the traditional curtain, and consumpted fuel was saved about 56% point in semiforcing culture and 28% point in retarding culture of pepper. In addition, uniform distribution of air temperature and relative humidity in greenhouse environment resulted in earlier flowering and higher yields in hot pepper.

  • PDF

Analysis of Parameter Characteristic of Parallel Electrodes Conduction-cooled Film Capacitor for HF-LC Resonance (고주파 LC 공진을 위한 병렬전극 전도냉각 필름커패시터의 파라메타 특성 분석)

  • Won, Seo-Yeon;Lee, Kyeong-Jin;Kim, Hie-Sik
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.6
    • /
    • pp.155-166
    • /
    • 2016
  • It is important to configure capacitance(C) of the capacitor and the induction coefficient(L) of the work coil on the resonant circuit design stage in order to induce heating on the object by a precise and constant frequency components in the electromagnetic induction heating equipment. Work coil conducts a direct induction heating according to heating point and area of the object which has a fixed heat factor so that work coil is designed to has fixed value. On the other hands, Capacitor should be designed to be changed in order to be the higher the utilization of the entire equipment. It is extracted the samples by variation of single electrode capacity from the selection stage of raw materials for capacity to the stage of process design for output of the high frequency LC resonance of 700kHz on 1000 VAC maximum voltage and current to $200I_{MAX}$. It is suggested fundamental experiment results in order to prove relation for the optimal design of HF-LC resonance conduction-cooled capacitor based on the response of frequency characteristics and results of output parameters according to variation of the capacitance size.

Effect of Induction Heating Conditions on Globular Microstructure of Al-7%Si-0.3%Mg Alloy for Thixoforming (Thixoforming을 위한 Al-7%Si-0.3%Mg 합금의 유도 가열 조건이 구상화 조직에 미치는 영향)

  • Jung, Hong-Kyu;Kang, Chung-Gil
    • Journal of Korea Foundry Society
    • /
    • v.18 no.5
    • /
    • pp.450-461
    • /
    • 1998
  • The optimal reheating conditions to apply the thixoforging and semi-solid die casting process were investigated by changing the reheating time, the holding time, the reheating temperatures, the capacity of the induction heating system, and the adiabatic material size. In the case of solid fraction fs=50% (for semi-solid die casting), the microstructure of SSM (specimen size:$d76{\times}l90$) at the condition of the first elevating time of 4 min, holding time of 1 min and holding temperature of $350^{\circ}C$, the second elevating time of 3 min, holding time of 3 min and holding temperature of $575^{\circ}C$, the third elevating time of 1 min, holding time of 2 min and holding temperature of $584^{\circ}C$, capacity of Q=8.398KW is obtained with globular microstructure and finest. In addition, in the case of solid fraction fs=55% (for thixoforging), the SSM (specimen size:$d76{\times}l90$) at the condition of the first elevating time of 4 min, holding time of 1 min and holding temperature of $350^{\circ}C$, the second elevating time of 3 min, holding time of 3 min and holding temperature of $570^{\circ}C$, the third elevating time of 1 min, holding time of 2 min and holding temperature of $576^{\circ}C$, capacity of Q=12.04KW is obtained with the finest globular microstructure. We saw that the most important factor in a three-step reheating process is the final holding time.

  • PDF

The Performance Improvement of a Gas Injection Heat Pump with a Flash Tank (기액분리기를 적용한 가스 인젝션 히트펌프의 성능 향상에 관한 실험적 연구)

  • Son, Kilsoo;Kim, Dongwoo;Choi, Sungkyung;Kim, Yongchan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.6
    • /
    • pp.297-305
    • /
    • 2017
  • Air-source heat pumps are widely used in residential heating systems. However, the decrease in the capacity of the heat pump is unavoidable when operating at very low and high ambient temperatures. The vapor injection technique is considered a promising technology to overcome this problem. Recent research on vapor injection cycles have mainly adopted a scroll compressor with an internal heat exchanger at severe operating conditions. This study measured the COP and EER of a gas injection heat pump using a flash tank with an inverter-driven rotary compressor at severe operating conditions. Compared to non-injection heat pumps, the heating capacity and COP of the gas injection heat pump improved up to 15% and 2.9%, respectively, at outdoor temperatures of $-10^{\circ}C$ to $7^{\circ}C$. The cooling capacity of the gas injection heat pump was 11% higher than the non-injection heat pump at an outdoor temperature of $35^{\circ}C$. At the same time, the EER of the gas injection heat pump was similar to that of the non-injection heat pump.

A Study on the Performance Characteristics of Water Heat Source Heat Pump System using CO2 Refrigerant (이산화탄소를 사용한 수열원 히트펌프 시스템의 성능 특성에 관한 실험적 연구)

  • Chang, Keun-Sun;Kang, Hee-Jeong;Kim, Young-Jae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.8
    • /
    • pp.3366-3373
    • /
    • 2011
  • In this study, performance characteristics of a water source heat pump system using $CO_2$ as a refrigerant are investigated experimentally. Cooling and heating capacities and COP of the system are analyzed for various system performance variables such as refrigerant charge, expansion valve opening, compressor frequency and internal heat exchanger. Results show that optimum amount of refrigerant charge and expansion valve opening exists at maximum point of COP curve, and cooling capacity increases but COP decreases with the increase of compressor frequency. When the internal heat exchanger is installed, cooling capacity increases about 4.0% whereas heating capacity decreases about 0.89% compared to the case without internal heat exchanger.

Combustion Characteristics of Premixed Burner for Fuel Reformer (개질기용 예혼합 연소장치의 연소특성 연구)

  • Lee, Pil-Hyong;Lee, Jae-Young;Han, Sang-Seok;Park, Chang-Soo;Hwang, Sang-Soon
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2181-2185
    • /
    • 2008
  • Fuel processing systems which convert HC fuel into $H_2$ rich gas (such as stream reforming, partial oxidation, auto-thermal reforming) need high temperature environment($600-1000^{\circ}C$). Generally, anode-off gas or mixture of anode-off gas and LNG is used as input gas of fuel reformer. In order to make efficient and low emission burner system for fuel reformer, it is necessary to elucidate the combustion and emission characteristic of fuel reformer burner. The purpose of this study is to develop a porous premixed flat ceramic burner that can be used for 1-5kW fuel cell reformer. Ceramic burner experiments using natural gas, hydrogen gas, anode off gas were carried out respectively to investigate the flame characteristics by heating capacity and equivalence ratio. Results show that the stable flat flames can be established for natural gas, hydrogen gas, anode off gas and mixture of natural & anode off gas as reformer fuel. For all of fuels, their burning velocities become smaller as the equivalence ratio goes to the lean mixture ratio, and a lift-off occurs at lean limit. Flame length in hydrogen and anode off gas became longer with increasing the heat capacity.

  • PDF

Heat Recovery Characteristics of the Exhaust Heat Recovery System with Heat Pipe Unit Attached to the Hot Air Heater in the Greenhouse (히트파이프를 이용한 온풍난방기 배기열회수 시스템의 열회수 특성)

  • Kang, K. C.;Kim, Y. J.;Ryou, Y. S.;Baek, Y.;Rhee, K. J.
    • Journal of Biosystems Engineering
    • /
    • v.26 no.5
    • /
    • pp.441-448
    • /
    • 2001
  • Hot air heater with light oil combustion is used as the most common heater for greenhouse heating in the winter season. However, exhaust gas heat discharged to atmosphere through chimney reaches up to 10~20% of total heat capacity of the oil burred. In order to recover the heat of this exhaust gas and to use for greenhouse heating, the heat pipe type exhaust heat recovery system was manufactured and tested in this experiment. The system consisted of a heat exchanger made of heat pipes, ø15.88${\times}$600mm located in the rectangular box of 675(L)${\times}$425(W)${\times}$370(H)mm, an air suction fan and air ducts. The number of heat pipe was 60, calculated considering the heat exchange amount between exhaust gas and air and heat transfer capacity of a heat pipe. The working fluid of heat pipe was acetone because acetone is known for its excellent heat transfer capacity. The system was attached to the exhaust gas path. According to the performance test it could recover 53,809 to 74,613kJ/h depending on the inlet air temperature of 12 to -12˚at air flow rate of 1.100㎥/h. The temperature of the exhaust gas left the heat exchanger dropped to 100$^{\circ}C$ from 270$^{\circ}C$ after the heat exchange between the suction air and the exhaust gas.

  • PDF

Post-fire test of precast steel reinforced concrete stub columns under eccentric compression

  • Yang, Yong;Xue, Yicong;Yu, Yunlong;Gong, Zhichao
    • Steel and Composite Structures
    • /
    • v.33 no.1
    • /
    • pp.111-122
    • /
    • 2019
  • This paper presents an experimental work on the post-fire behavior of two kinds of innovative composite stub columns under eccentric compression. The partially precast steel reinforced concrete (PPSRC) column is composed of a precast outer-part cast using steel fiber reinforced reactive powder concrete (RPC) and a cast-in-place inner-part cast using conventional concrete. Based on the PPSRC column, the hollow precast steel reinforced concrete (HPSRC) column has a hollow column core. With the aim to investigate the post-fire performance of these composite columns, six stub column specimens, including three HPSRC stub columns and three PPSRC stub columns, were exposed to the ISO834 standard fire. Then, the cooling specimens and a control specimen unexposed to fire were eccentrically loaded to explore the residual capacity. The test parameters include the section shape, concrete strength of inner-part, eccentricity ratio and heating time. The test results indicated that the precast RPC shell could effectively confine the steel shape and longitudinal reinforcements after fire, and the PPSRC stub columns experienced lower core temperature in fire and exhibited higher post-fire residual strength as compared with the HPSRC stub columns due to the insulating effect of core concrete. The residual capacity increased with the increasing of inner concrete strength and with the decreasing of heating time and load eccentricity. Based on the test results, a FEA model was established to simulate the temperature field of test specimens, and the predicted results agreed well with the test results.

Investigation of Electric Vehicle Performance Affected by Cabin Heating (실내 난방이 전기 자동차 주행 성능에 미치는 영향 조사)

  • Kim, Kibum;Lee, Wan-Seong;Kim, Yong-Yun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.10
    • /
    • pp.4679-4684
    • /
    • 2013
  • Compared with internal combustion engine, the electric vehicle has a limitation of low driving range due to low battery capacity due to relatively low energy density. Moreover, the energy consumption rapidly increases up to 30% during winter season with operating electric heater. In this study, electric vehicle performance was evaluated using heat pump having higher energy efficiency rather than electric heater for cabin heating. Electric vehicle system and heat pump system were developed using 1-D simulation software called AMESim, the simulation result indicated that the energy consumption could be reduced approximately 66% when the electric heating system was replaced with the heat pump system. As a result, the driving range is expected to increase the similar value. This study proved the merit of heat pump for cabin heating in electric vehicle, and it could contribute to developing suitable heating method for electric vehicles.