• Title/Summary/Keyword: heat-transfer

Search Result 7,599, Processing Time 0.032 seconds

MECHANISM OF NUCLEATE BOILING HEAT TRANSFER FROM WIRES IMMERSED IN SATURATED FC-72 AND WATER (전열면적 및 유체의 종류가 핵비등 열전달에 미치는 영향과 그 원인)

  • Kim, J.H.;You, S.M.;Park, J.Y.
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.232-239
    • /
    • 2001
  • The present study is an experimental investigation of nucleate boiling heat transfer mechanism in pool boiling from wire heaters immersed in saturated FC-72 coolant and water. The vapor volume flow rate departing from a wire during nucleate boiling was determined by measuring the volume of bubbles, varying $25{\mu}m,\;75{\mu}m,\;and\;390{\mu}m$, from a wire utilizing the consecutive-photo method. The effects of the wire size on heat transfer mechanism during a nucleate boiling were investigated by measuring vapor volume flow rate and the frequency of bubbles departing from a wire immersed in saturated FC-72. One wire diameter of $390{\mu}m$ was selected and tested in saturated water to investigate the fluid effect on the nucleate boiling heat transfer mechanism. Results of the study showed that an increase in nucleate boiling heat transfer coefficients with reductions in wire diameter was related to the decreased latent heat contribution. The latent heat contribution of boiling heat transfer for the water test was found to be higher than that of FC-72. The frequency of departing bubbles was correlated as a function of bubble diameters.

  • PDF

Boiling Heat Transfer Characteristics of $CO_2$ in Horizontal Smooth Microchannel (수평 microchannel의 $CO_2$ 비등열전달)

  • Choi, Kwang-Il;Ardiyansyah, Ardiyansyah;Oh, Jong-Taek
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.241-246
    • /
    • 2007
  • The present paper dealt with an experimental study of boiling heat transfer characteristics of $CO_2$. Heat transfer coefficients of the refrigerant flow inside horizontal smooth microchannel were obtained with inner tube diameter of 0.3mm and length of 300mm. The direct electric heating method was applied for supplying the heat uniformly to the refrigerant. The experiments were conducted with $CO_2$ purity of 99.99%, at saturation temperature of $10^{\circ}C$, mass flux ranges of $300{\sim}900\;kg/m^2s$, and heat flux ranges of $15{\sim}45\;kW/m^2$. While heat transfer coefficient increased with the increase of heat flux in the low quality region, the heat transfer coefficient decreased with the increase of quality in the high quality region. The heat transfer coefficients were compared with seven existing correlations with the Gungor-Winterton's(1986) correlation gave the best prediction. A new corelation to predict the two-phase flow heat transfer coefficient was developed based on the Chen(1966) correlation. The new correlation predicted the experimental data well with a mean deviation of 9.69% and average deviation of -3.03%.

  • PDF

EXPERIMENTAL INVESTIGATIONS ON HEAT TRANSFER TO CO2 FLOWING UPWARD IN A NARROW ANNULUS AT SUPERCRITICAL PRESSURES

  • Kim, Hwan-Yeol;Kim, Hyung-Rae;Kang, Deog-Ji;Song, Jin-Ho;Bae, Yoon-Yeong
    • Nuclear Engineering and Technology
    • /
    • v.40 no.2
    • /
    • pp.155-162
    • /
    • 2008
  • Heat transfer experiments in an annulus passage were performed using SPHINX(Supercritical Pressure Heat Transfer Investigation for NeXt Generation), which was constructed at KAERI(Korea Atomic Energy Research Institute), to investigate the heat transfer behaviors of supercritical $CO_{2}$. $CO_{2}$ was selected as the working fluid to utilize its low critical pressure and temperature when compared with water. The mass flux was in the range of 400 to 1200 $kg/m^{2}s$ and the heat flux was chosen at rates up to 150 $kW/m^{2}$. The selected pressures were 7.75 and 8.12 MPa. At lower mass fluxes, heat transfer deterioration occurs if the heat flux increases beyond a certain value. Comparison with the tube test results showed that the degree of heat transfer deterioration in the heat flux was smaller than that in the tube. In addition, the Nusselt number correlation for a normal heat transfer mode is presented.

A Experimental Study on the Boiling Heat Transfer Characteristics of Nanofluids by the Size and Mixing Ratio of Graphene Particle (그래핀 입자의 크기와 혼합비율이 나노유체의 비등열전달에 미치는 영향에 대한 실험적 연구)

  • Park, Sung-Seek;Kim, Young Hun;Kim, Nam-Jin
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.2
    • /
    • pp.53-62
    • /
    • 2015
  • Boiling heat transfer characteristic is very important in the various industries such as solar thermal system, power generation, heat exchangers, cooling of high-power electronics components and cooling of nuclear reactors. Therefore, in this study, boiling heat transfer characteristics such as critical heat flux (CHF) and heat transfer coefficient under the pool boiling state were tested using graphene nanofluids. Graphene used in this study, which have the same thermal conductivity but with different sizes. The experimental results showed that the highest the CHF and boiling heat transfer coefficient increase ratio for graphene nanofluids was at the 0.01 vol.%. At the present juncture, the CHF and boiling heat transfer coefficient increase ratio of the small-sized graphene nanofluids was higher than the large-sized graphene nanofluids.

A Numerical Study of the Characteristics of Heat Transfer in External Heat Exchanger of CFB Boiler (순환유동층보일러 외부열교환기의 열전달 특성에 관한 수치해석적 연구)

  • Hwang, Moonkyeong;Kim, Jungrae
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.15-16
    • /
    • 2014
  • With the increasing trend in CFB(Circulating Fluidized Bed) boiler scale, the EHE(External Heat Exchanger) must be adopted to the large-scale boilers to recover insufficient heat transfer surface. In this study, the numerical analysis model for EHE in commercial 300MWe CFB boiler was developed with the inclusion of mechanistic model, which enables the heat transfer prediction. Finally, the calculated absorbed heat and derived heat transfer coefficient are evaluated through the verification with experimental data.

  • PDF

Measurement of Heat Transfer Rates and Pressure Drops in a Solid Particle Circulating Fluidized Heat Exchanger (고체입자 순환유동층 열교환기의 열전달률 및 압력강하 측정)

  • 이금배;전용두;박상일
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.9
    • /
    • pp.817-824
    • /
    • 2000
  • The fluidized solid particles not only increase heat transfer rates but have a cleaning function eliminating contaiminated substances caused from condensate water. An experiment was performed to measure heat transfer rates and pressure drops in a fluidized heat exchanger with circulating solid particle for constant heat transfer rate. As a results, the heat transfer rate increased by 26.9~2.6%, heat transfer coefficient by 11.9~2.7%, and pressure drop by 79.1~10.9% at the gas velocity of 6.1 ~12.1 m/s and solid particle flow rate of 100~50 kg/h with the heat exchanger of H: 50 mm, $D_p=2 in,\; and\;D_{BP}$=30 mm.

  • PDF

Numerical Analysis of Heat Transfer Characteristics in Corrugated Plate Type Heat Exchanger Channel (주름형상 판형열교환기 채녈에서의 열전달 특성 수치해석적 연구)

  • 김태용;이재용;김남진;김종보
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.7
    • /
    • pp.588-594
    • /
    • 2001
  • The purpose of this study is to investigate the thermal and hydrodynamic characteristics of the channel in corrugated plate type heat exchangers numerically. Numerical work has been conducted using the Reynolds Stress Model(RSM) by utilizing the commercial finite-volume code, FLUENT. Based on this model, the dependence of heat transfer and friction factor on geometrical parameters have been investigated. It is found that larger corrugation angle give higher values of heat transfer coefficients and friction factors. As the reynolds number increases, the heat transfer coefficient also increases. It is also observed that the heat transfer coefficient reaches maximum while the friction factor stays relatively low at same corrugation angle. Through the analysis, it is found that the optimum corrugation angle for the heat exchanger performance exists. It is noted that the flow repulsions at the contact point of the two fluid streams make the low mixing more active for larger corrugation angle and high reynolds number.

  • PDF

An Experimental Study on Heat Transfer Coefficients just before Critical Heat Flux Conditions in Uniformly Heated Vertical Annulus (균일 가열 수직 환상관에서 임계열유속조건 직전의 열전달계수에 관한 실험적 연구)

  • Chun, Se-Young;Lim, Chang-Ha;Moon, Sang-Ki;Chung, Moon-Ki;Choi, Young-Don
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.330-336
    • /
    • 2001
  • Water heat transfer experiments were carried out in a uniformly heated annulus with a wide range of pressure conditions. The local heat transfer coefficients for saturated water flow boiling have been measured just before the occurrence of the critical heat flux (CHF) along the length of the heated section. The trends of the measured heat transfer coefficients were quite different from the conventional understanding for the heat transfer of saturated flow boiling. This discrepancy was explained from the nucleate boiling in the liquid film of annular flow under high heat flux conditions.

  • PDF

An Experimental Study of Heat and Mass Transfer During Absorption and Desorption Processes in a Hydride Material Bed (수소저장합금 반응용기에서 수소 흡.탈장과정에서의 열 및 물질전달 특성에 관한 실험적인 연구)

  • 박찬우;강병하;이춘식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.1
    • /
    • pp.202-211
    • /
    • 1995
  • Heat and hydrogen transfer characteristics have been experimentally investigated for a hydride reaction bed, in which hydride material LaN $i_{4,7}$A $l_{0.3}$ is contained for hydrogen storage. This problem is of particular interest in the design of metal hydride devices such as metal-hydride refrigerators, heat pumps, or metal-hydride storage units. Transient behavior of hydrogen transfer through the hydride materials as well as heat transfer is studied during absorption and desorption processes in detail. The experimental results obtained indicate that the mass flow of the hydrogen is strongly affected by the governing parameters, such as the initial pressure of the reaction bed, absorption or desorption period, and cooling or heating temperature. These mass transfer results are along with the heat transfer rate between hydride materials and heat transfer medium in the reaction bed.d.d.

A Study on the Heat Transfer from a Flat Plate and the Heat Transfer Enhancement by the Vortex Generator (평판에서의 열전달 및 와류발생기에 의한 열전달 촉진에 관한 연구)

  • Yoo, Seong-Yeon;Song, Si-Young;Park, Jong-Hark
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1447-1452
    • /
    • 2003
  • Vortex is very interesting flow phenomena on the heat transfer enhancement. In the present study, naphthalene sublimation technique is used to determine the average and local mass transfer coefficients on the flat plate with vortex generator. A parametric study with Reynolds number and angle of attack is carried out to investigate the heat transfer enhancement. The heat transfer coefficients on the flat plate with rectangular type and delta type vortex generator are compared with those of the flat plate without the vortex generator. Comparing heat transfer coefficients between rectangular type and delta type vortex generator, rectangular type vortex generator has much higher value than delta type vortex generator at the same condition.

  • PDF