• Title/Summary/Keyword: heat-stretching

Search Result 54, Processing Time 0.023 seconds

Heat and mass transfer of a second grade magnetohydrodynamic fluid over a convectively heated stretching sheet

  • Das, Kalidas;Sharma, Ram Prakash;Sarkar, Amit
    • Journal of Computational Design and Engineering
    • /
    • v.3 no.4
    • /
    • pp.330-336
    • /
    • 2016
  • The present work is concerned with heat and mass transfer of an electrically conducting second grade MHD fluid past a semi-infinite stretching sheet with convective surface heat flux. The analysis accounts for thermophoresis and thermal radiation. A similarity transformations is used to reduce the governing equations into a dimensionless form. The local similarity equations are derived and solved using Nachtsheim-Swigert shooting iteration technique together with Runge-Kutta sixth order integration scheme. Results for various flow characteristics are presented through graphs and tables delineating the effect of various parameters characterizing the flow. Our analysis explores that the rate of heat transfer enhances with increasing the values of the surface convection parameter. Also the fluid velocity and temperature in the boundary layer region rise significantly for increasing the values of thermal radiation parameter.

Design of Cross Wedge Rolling Die for a Non-heat-treated Cold Steel using CAD and CAE (CAD/CAE를 이용한 냉간 비조질강용 회전전조 금형설계)

  • Lee H. W.;Yoon D. J.;Lee G. A.;Choi S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.400-403
    • /
    • 2004
  • A non-heat기leafed steel does not need quenching and tempering processes that are called a heat treatment differently from conventional steel. Since the tensile strength of this steel is higher than 900MPa, a conventional forming process should be changed to incremental forming process such as a cross wedge rolling that requires lower load capacity than conventional ones. In this paper, the cold cross wedge rolling (CWR) die has been designed using CAD/CAE In order to produce near-net-shaped component of ball stud of non-heat-treated cold steel. Finite element analyses were applied in order to investigate process parameters of CWR. Results provide that the stretching angle and the forming angie at knifing zone in CWR process is important parameter to be the stable process under the low friction coefficient condition.

  • PDF

An Influence Stretching Exercise with Ultrasound and Microwave Application Having on Knee Joint Position Sense after Induction to Muscle Fatigue (근피로 유발 후 신장운동시 심부투열치료가 슬관절 위치감각에 미치는 영향)

  • Park, Jang-Sung;Choi, Eun-Young;Jung, Hwa-Su
    • Journal of the Korean Academy of Clinical Electrophysiology
    • /
    • v.8 no.1
    • /
    • pp.37-42
    • /
    • 2010
  • Purpose : This study will recognize about the influences that stretching exercise with ultrasound and microwave application has on a knee joint position sense after induction to muscle fatigue. Methods : The object by each ten people divided at random thirty physical healthy adult men to constant group 1, group 2, group 3 to the objects. Treadmill exercised for induction to muscle fatigue, and let an exercise intensity decided on 85% of the maximum heart beat number with the goal heart beat number, and you exercise. Goal heart beat number measured as used heat rate monitor, and measured a oneself at the scale in order to recognize own physical state after end treadmill exercise to all objects to criteria to evaluate an ability shown in case of sports. Knee joint position sense used a N-K table, and experimenter did so as adaptation got passively arbitrary three angle done, and to order an original position. The object carried in person out one angle that experimenter designated, and measured repeatedly an error along him to this three times after being so. Rear before induction to muscle fatigue a position sense and measured after stretching exercise application, and played. Stretching exercise after induction applied stretching exercise, stretching exercise with ultrasound, stretching exercise with microwave, and applied to each group 1, group 2 and group 3 to muscle fatigue. Results : The result each group the difference which considers does not come out it was not but, improvement of the position sense is the possibility of knowing was from group 1, group 2 and group 3. Conclusion : These findings stretching exercise and stretching exercise with ultrasound and microwave after induct ion give help to a position sense elevation, and execute stretching exercise, and be effective against damage prevention by physical insecurity to muscle fatigue, and look.

RADIATION EFFECTS ON MHD BOUNDARY LAYER FLOW OF LIQUID METAL OVER A POROUS STRETCHING SURFACE IN POROUS MEDIUM WITH HEAT GENERATION

  • Venkateswarlu, M.;Reddy, G. Venkata Ramana;Lakshmi, D. Venkata
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.19 no.1
    • /
    • pp.83-102
    • /
    • 2015
  • The present paper analyses the radiation effects of mass transfer on steady nonlinear MHD boundary layer flow of a viscous incompressible fluid over a nonlinear porous stretching surface in a porous medium in presence of heat generation. The liquid metal is assumed to be gray, emitting, and absorbing but non-scattering medium. Governing nonlinear partial differential equations are transformed to nonlinear ordinary differential equations by utilizing suitable similarity transformation. The resulting nonlinear ordinary differential equations are solved numerically using Runge-Kutta fourth order method along with shooting technique. Comparison with previously published work is obtained and good agreement is found. The effects of various governing parameters on the liquid metal fluid dimensionless velocity, dimensionless temperature, dimensionless concentration, skin-friction coefficient, Nusselt number and Sherwood number are discussed with the aid of graphs.

Investigation of Properties of the PET Film Dependent on the Biaxial Stretching (PET 필름의 이축연신에 따른 물성변화 연구)

  • Lee, Jung-Gyu;Park, Sang-Ho;Kim, Seong-Hun
    • Polymer(Korea)
    • /
    • v.34 no.6
    • /
    • pp.579-587
    • /
    • 2010
  • To investigate the properties of PET films, PET films were extruded at various temperature above $T_m$ and quenched at $18^{\circ}C$ for amorphous sheet, and stretched along a direction defined as the machine direction (MD) with a transverse direction (TD) above $T_g$ at various stretching ratios and then annealed at various temperatures produced by SKC PET line. Thermal shrinkage of MD and TD increased with decreasing annealing temperature and extruding temperature, and increasing stretching ratio. The degree of crystallinity, density, heat of fusion (${\Delta}H$) and pre-melting point ($T_m'$) increased with increasing annealing temperature and extruding temperature. Number average molecular weight ($M_n$) and intrinsic viscosity decreased with increasing extruding temperature. Tensile strength and modulus increased with increasing stretching ratio, however decreased with increasing annealing temperature. Reflective index of both stretching and thickness direction increased with increasing stretching ratio and annealing temperature.

Effect of Post-Process on Physical Properties of Electrospun PEI/PVdF Blend Nonwoven Web (전기방사법으로 제조한 PEI/PVdF 블렌드 웹의 물리적 특성에 대한 후처리 영향)

  • Seok, Hoon;Park, Cheol-Min;Kim, Dong-Young;Jo, Seong-Mu
    • Polymer(Korea)
    • /
    • v.36 no.5
    • /
    • pp.606-611
    • /
    • 2012
  • Polyetherimide (PEI) and poly(vinylidene fluoride) (PVdF) blend web was prepared by electrospinning technique. In order to improve low mechanical properties, post processes like hot-pressing and heat-stretching were employed, and a study on the effects of post processes on their mechanical properties was performed. To confirm the physical properties of the web, scanning electron microscopy and tensile measuring instrument were used. The mechanical strength of webs pressed in the ratios of 1/2, 1/3, 1/4 and 1/5 at $180^{\circ}C$ were improved four-to-five times compared to pristine webs. Also they showed an additional increase by 2~8MPa, by heat-stretching 30 to 40% at $220^{\circ}C$.

Numerical and statistical analysis of Newtonian/non-Newtonian traits of MoS2-C2H6O2 nanofluids with variable fluid properties

  • Manoj C Kumar;Jasmine A Benazir
    • Advances in nano research
    • /
    • v.16 no.4
    • /
    • pp.341-352
    • /
    • 2024
  • This study investigates the heat and mass transfer characteristics of a MoS2 nanoparticle suspension in ethylene glycol over a porous stretching sheet. MoS2 nanoparticles are known for their exceptional thermal and chemical stability which makes it convenient for enhancing the energy and mass transport properties of base fluids. Ethylene glycol, a common coolant in various industrial applications is utilized as the suspending medium due to its superior heat transfer properties. The effects of variable thermal conductivity, variable mass diffusivity, thermal radiation and thermophoresis which are crucial parameters in affecting the transport phenomena of nanofluids are taken into consideration. The governing partial differential equations representing the conservation of momentum, energy, and concentration are reduced to a set of nonlinear ordinary differential equations using appropriate similarity transformations. R software and MATLAB-bvp5c are used to compute the solutions. The impact of key parameters, including the nanoparticle volume fraction, magnetic field, Prandtl number, and thermophoresis parameter on the flow, heat and mass transfer rates is systematically examined. The study reveals that the presence of MoS2 nanoparticles curbs the friction between the fluid and the solid boundary. Moreover, the variable thermal conductivity controls the rate of heat transfer and variable mass diffusivity regulates the rate of mass transfer. The numerical and statistical results computed are mutually justified via tables. The results obtained from this investigation provide valuable insights into the design and optimization of systems involving nanofluid-based heat and mass transfer processes, such as solar collectors, chemical reactors, and heat exchangers. Furthermore, the findings contribute to a deeper understanding of stretching sheet systems, such as in manufacturing processes involving continuous casting or polymer film production. The incorporation of MoS2-C2H6O2 nanofluids can potentially optimize temperature distribution and fluid dynamics.

Runge-Kutta method for flow of dusty fluid along exponentially stretching cylinder

  • Iqbal, Waheed;Jalil, Mudassar;Khadimallah, Mohamed A.;Ayed, Hamdi;Naeem, Muhammad N.;Hussain, Muzamal;Bouzgarrou, Souhail Mohamed;Mahmoud, S.R.;Ghandourah, E.;Taj, Muhammad;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • v.36 no.5
    • /
    • pp.603-615
    • /
    • 2020
  • The present manuscript focuses on the flow and heat transfer of the dusty fluid along exponentially stretching cylinder. Enormous attempts are made for fluid flow along cylinder but the study of fluid behavior along exponentially stretching cylinder is discussed lately. Using appropriate transformations, the governing partial differential equations are converted to non-dimensional ordinary differential equations. The transformed equations are solved numerically using Shooting technique with Runge-Kutta method. The influence of the physical parameters on the velocity and temperature profiles as well as the skin fraction coefficient and the local Nusselt number are examined in detail. The essential observations are as the fluid velocity decreases but temperature grows with rise in particle interaction parameter, and both the fluid velocity and temperature fall with increase in mass concentration parameter, Reynold number, Particle interaction parameter for temperature and the Prandtl number.

Residual Heat Flow and Crustal Properties (잔여 지열류량과 대륙지각의 특성)

  • Han, Uk;Chapman, David S.
    • Economic and Environmental Geology
    • /
    • v.27 no.4
    • /
    • pp.397-409
    • /
    • 1994
  • The seemingly scattered plot of heat flow versus crustal thickness is explained by geodynamic processes and simple thermal relaxation in two contrasting tectonic elements. Elevated heat flow is characteristic of rift provinces where the crust is attenuated by stretching but also of orogenic belts where thrust tectonics thickens the crust and significantly enhances crustal heat production. With the progression of time, isostatic processes thin the thickened crust through uplift and erosion and thicken the rifted crust through subsidence and sedimentation. Heat flow relaxes to a value in equilibrium with background mantle heat flow.

  • PDF