• Title/Summary/Keyword: heat wave

Search Result 741, Processing Time 0.027 seconds

Phenomena of Hyperbolic Heat Conduction in the Hot Mold with an Inner Defect (내부결함이 있는 고온 금형에서의 쌍곡선형 열전도 현상)

  • Lee, Gwan-Su;Im, Gwang-Ok;Jo, Hyeong-Cheol;Kim, U-Seung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.7
    • /
    • pp.952-957
    • /
    • 2001
  • In the glass forming process, the phenomena of hyperbolic heat conduction in the hot mold with an inner defect are studied analytically. It is shown that the temperature predicted by the parabolic model is underestimated compared to the one by the hyperbolic model. As the rmal wave is reflected from the area with defects and then arrives at the surface supplied by the heat flux, it is expected that there exists thermal shock in the materials. The area with defects is assumed to be adiabatic since its thermal conductivity is much lower compared to the one of the material. The results also indicate that the sudden temperature -jump in the mold surface can cause diverse problems such as glass defect (embryo mark, etc), oxidation of mold and coating, and change of material properties.

Effect of Wavy Flow of Vertical Falling Film on the Absorption Performance (흡수성능에 미치는 수직 액막 파동의 영향에 관한 연구)

  • 김정국;조금남
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.2
    • /
    • pp.194-201
    • /
    • 2004
  • In the present study, the improvement of absorption characteristics on combined heat and mass transfer process in a falling film of a vertical absorber by change of geometric parameters were studied experimentally and analytically. The energy and diffusion equations are solved simultaneously to give the temperature and concentration variations at the liquid solution-refrigerant vapor interface and at the wall. Absorption behaviors of heat and mass transfer were analyzed through falling film of the LiBr aqueous solution contacted by refrigerant vapor in the absorber. Effects of film Reynolds number, geometric parameters by insert device (spring) and flow pattern on heat and mass transfer performances have been also investigated. Especially, effects of the flow pattern by geometric parameters have been considered to observe the total heat and mass transfer rates through falling film along the absorber. As a numerical and experimental result, maximum absorption rate was shown at the wave-flow by insert device (spring). The error ranges between experiment and analysis were from 5.8 to 12% at Re$_{f}$ > 100.0.

Optical and Heat Transfer Characteristics in a Rapid Thermal Annealing System for LCD Manufacturing Procedures (LCD 제작용 급속 열처리 시스템내의 광학 및 열전달 특성)

  • Lee, Seong-Hyuk;Kim, Hyung-June;Shin, Dong-Hoon;Lee, Joon-Sik;Choi, Young-Ki;Park, Seung-Ho
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1370-1375
    • /
    • 2004
  • This article investigates the heat transfer characteristics in a RTA system for LCD manufacturing and suggests a way to evaluate the quality of a poly-Si film from the thin film optics analysis. The transient and one-dimensional conductive/radiative heat transfer equation considering wave interference effect is solved to predict surface temperatures of thin films. In dealing with radiative heat transfer, a one-dimensional two-flux method is used and the ray tracing method is also utilized to account for the wave interference effects. It is assumed that each interface is assumed diffusive but the spectral radiative properties are included. It is found that the selective heating region exists for various wavelengths and consequently may contribute to heat the poly-Si film. Using the formalism of the characteristic transmission matrix, the lumped structure reflectance, transmittance, and absorptance are calculated and they are compared with experimental data of the poly-Si film during the SPC process via the FE-RTA (Field-Enhanced RTA) technology.

  • PDF

Surface Heat Budget of the Northern Sea of Cheju Island for June-August 1993 and 1994 (제주도 북부해역의 표면 열수지 해석 -1993년과 1994년 하계의 경우-)

  • 김해동;양성기
    • Journal of Environmental Science International
    • /
    • v.4 no.3
    • /
    • pp.197-206
    • /
    • 1995
  • Surface heat balance of the northern sea of Cheju Island for summer in 1993 and 1994 is analyzed using the observation data obtained by Marine Research Institute, Cheju National University. Each flux elements at the sea surface is derived from the marine meteorological reports with application of an aerodynamical bulk method for the turbulent heat fluxes, and empirical formulae for the long-wave radiation heat fluxes. The flux divergence of oceanic heat transport and the rate of heat storage in the ocean are estimated as residual. The features of the surface heat balance are mainly decided by the solar radiation flux and the latent heat flux for 199B. But the Bowen Ratios were large for 1993. This means that the sensible heat fluxes were nearly equal to the latent heat fluxes for 1993. In this period, mean flux divergence of oceanic heat transport is about 130 W/$m^2$.

  • PDF

Improvement of Vegetation Cooling Effects in BioCAS for Better Estimation of Daily Maximum Temperature during Heat Waves - In Case of the Seoul Metropolitan Area - (식생냉각효과 적용을 통한 BioCAS의 폭염기간 일 최고기온 추정 개선 - 서울 및 수도권지역을 중심으로 -)

  • Lee, Hankyung;Yi, Chaeyeon;Kim, Kyu Rang;Cho, Changbum
    • Atmosphere
    • /
    • v.29 no.2
    • /
    • pp.131-147
    • /
    • 2019
  • On the urban scale, Micro-climate analysis models for urban scale have been developed to investigate the atmospheric characteristics in urban surface in detail and to predict the micro-climate change due to the changes in urban structure. BioCAS (Biometeorological Climate Impact Assessment System) is a system that combines such analysis models and has been implemented internally in the Korea Meteorological Administration. One of role in this system is the analysis of the health impact by heat waves in urban area. In this study, the vegetation cooling models A and B were developed and linked with BioCAS and evaluated by the temperature drop at the vegetation areas during ten selected heat-wave days. Smaller prediction errors were found as a result of applying the vegetation cooling models to the heat-wave days. In addition, it was found that the effects of the vegetation cooling models produced different results according to the distribution of vegetation area in land cover near each observation site - the improvement of the model performance on temperature analysis was different according to land use at each location. The model A was better fitted where the surrounding vegetation ratio was 50% or more, whereas the model B was better where the vegetation ratio was less than 50% (higher building and impervious areas). Through this study, it should be possible to select an appropriate vegetation cooling model according to its fraction coverage so that the temperature analysis around built-up areas would be improved.

A Study on Manufacturing Method of High Performance Smart EMW Absorber with Heat Radiating Function and Its Prospects (방열 기능형 고성능 스마트 전파흡수체 제조 방법 개발 및 전망)

  • Kim, Dong Il;Jeon, Yong Bok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.10
    • /
    • pp.841-850
    • /
    • 2015
  • With the rapid progress of electronics and radio communication technology, human enjoys greater freedom in information communication. However, EMW(Electro-Magnetic Wave) environments have become more complicate and difficult to control. Thus, international organizations, such as the American National Standard Institution(ANSI), Federal Communications Commission(FCC), the Comite Internationale Special des Perturbations Radio Electrique(CISPR), etc, have provided standard for controlling the EM wave environments and for the countermeasure of the electromagnetic compatibility(EMC). In this paper, fabrication of the smart EMW absorber which has heat radiating function and high performance absorption abilities were suggested. Furthermore, we prospected future smart EMW absorbers. The designed smart EMW absorber is fabricated following process. Firstly, we applied high temperature heat treated to a mixture of Iron-oxide($Fe_2O_3$) and ceramics. Secondly, we applied low temperature heat treated to the mixture of heat treated material and a carbon material. Lastly, we made apertures on the absorber. The designed smart EM wave absorber has the absorption ability of more than 20 dB from 2 GHz to 2.45 GHz band, respectively. Thus, it is respected that these results can be applied as various EMC devices in electronic, communication, and controlling systems.

Two-temperature thermoelastic surface waves in micropolar thermoelastic media via dual-phase-lag model

  • Abouelregal, A.E.;Zenkour, A.M.
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.6
    • /
    • pp.711-727
    • /
    • 2017
  • This article is concerned with a two-dimensional problem of micropolar generalized thermoelasticity for a half-space whose surface is traction-free and the conductive temperature at the surface of the half-space is known. Theory of two-temperature generalized thermoelasticity with phase lags using the normal mode analysis is used to solve the present problem. The formulas of conductive and mechanical temperatures, displacement, micro-rotation, stresses and couple stresses are obtained. The considered quantities are illustrated graphically and their behaviors are discussed with suitable comparisons. The present results are compared with those obtained according to one temperature theory. It is concluded that both conductive heat wave and thermodynamical heat wave should be separated. The two-temperature theory describes the behavior of particles of elastic body more real than one-temperature theory.

Reflection of plane harmonic wave in rotating media with fractional order heat transfer

  • Kaur, Iqbal;Lata, Parveen;Singh, Kulvinder
    • Advances in materials Research
    • /
    • v.9 no.4
    • /
    • pp.289-309
    • /
    • 2020
  • The aim of the present investigation is to examine the propagation of plane harmonic waves in transversely isotropic homogeneous magneto visco thermoelastic rotating medium with fractional order heat transfer and two temperature. It is found that, for two dimensional assumed model, there exist three types of coupled longitudinal waves (quasi-longitudinal, quasi-transverse and quasi-thermal) in frequency domain. phase velocities, specific loss, penetration depth, attenuation coefficients of various reflected waves are computed and depicted graphically. The effects of viscosity and fractional order parameter by varying different values are represented graphically.

MULTIPLE GENERALIZED PROLATE SPHEROIDAL WAVE TRANSFORM AND ITS APPLICATION

  • Sharma, S.D.
    • Kyungpook Mathematical Journal
    • /
    • v.20 no.1
    • /
    • pp.121-127
    • /
    • 1980
  • In the present paper the multiple generalized prolate spheroidal wave transform has been developed and its useful operational property has been discussed. As an application of this new transform we have considered the non-homogeneous cubical region. The source of heat generation lies inside it and is dependent upon temperature, and the conductivity is variable.

  • PDF

Propagation Characteristic of Ultrasonic on Slit Defect in Butt Joint (맞대기 용접부내의 인공 결함에서 초음파의 전파특성)

  • 남영현
    • Journal of Welding and Joining
    • /
    • v.14 no.6
    • /
    • pp.37-47
    • /
    • 1996
  • An ultrasonic testing uses the directivity of the ultrasonic wave which propagates in one direction. The directivity is expressed as the relationship between the propagate direction and its sound pressure. The directivity of ultrasonic wave is related to determination of testing sensitivity, scanning pitch and defect location. This paper investigated the directivity of ultrasonic wave, which scattered from slit defect located in heat-affected zone (HAZ) in butt joint using visualization method. The directivity of shear waves scattered from slit defect were different according to probe direction (far defect, near defect) and probe position (forward movement, maximum echo position, backward movement). The difference of directivity of reflection wave was existed between 2 MHz and 4 MHz angle probes. In the case of 2 MHz angle probe, the directivity of reflection wave was appeared sharp form because of the relation wave length and defect size.

  • PDF