• Title/Summary/Keyword: heat variations

검색결과 672건 처리시간 0.032초

EFFECTS OF TEMPERING AND PWHT ON MICROSTRUCTURES AND MECHANICAL PROPERTIES OF SA508 GR.4N STEEL

  • Lee, Ki-Hyoung;Jhung, Myung Jo;Kim, Min-Chul;Lee, Bong-Sang
    • Nuclear Engineering and Technology
    • /
    • 제46권3호
    • /
    • pp.413-422
    • /
    • 2014
  • Presented in this study are the variations of microstructures and mechanical properties with tempering and Post-Weld Heat Treatment (PWHT) conditions for SA508 Gr.4N steel used as Reactor Pressure Vessel (RPV) material. The blocks of model alloy were austenitized at the conventional temperature of $880^{\circ}C$ then tempered and post-weld heat treated at four different conditions. The hardness and yield strength decrease with increased tempering and PWHT temperatures, but impact toughness is significantly improved, especially in the specimens tempered at $630^{\circ}C$. The sample tempered at $630^{\circ}C$ with PWHT at $610^{\circ}C$ shows optimum mechanical properties in hardness, strength, and toughness, excluding only the transition property in the low temperature region. The microstructural observation and quantitative analysis of carbide size distribution show that the variations of mechanical properties are caused by the under-tempering and carbide coarsening which occurred during the heat treatment process. The introduction of PWHT results in the deterioration of the ductile-brittle transition property by an increase of coarse carbides controlling cleavage initiation, especially in the tempered state at $630^{\circ}C$.

운전조건 변화에 따른 이산화탄소 열펌프의 냉난방 성능특성 비교 (Cooling and Heating Performances of a CO2 Heat Pump with the Variations of Operating Conditions)

  • 조홍현;백창현;이응찬;강훈;김용찬
    • 대한기계학회논문집B
    • /
    • 제32권6호
    • /
    • pp.454-462
    • /
    • 2008
  • Since operating conditions are significantly different for heating and cooling mode operations in a $CO_2$ heat pump system, it is difficult to optimize the performance of the $CO_2$ cycle. In addition, the performance of a $CO_2$ heat pump is very sensitive to outdoor temperature and gascooler pressure. In this study, the cooling and heating performances of a variable speed $CO_2$ heat pump with a twin-rotary compressor were measured and analyzed with the variations of EEV opening and compressor frequency. As a result, the cooling and heating COPs were 2.3 and 3.0, respectively, when the EEV opening was 22%. When the optimal EEV openings for heating and cooling were 28% and 16%, the cooling and heating COPs increased by 3.3% and 3.9%, respectively, over the COPs at the EEV opening of 22%. Beside, the heating performance was more sensitive to EEV opening than the cooling performance. As the compressor speed decreased by 5 Hz, the cooling COP increased by 2%, while the heating COP decreased by 8%.

지열히트펌프의 작동시간 경과에 따른 COP 변화에 대한 연구 (Study on COP Variations with the duration of Ground Source Heat Pump Systems Operation)

  • 이용규;백남춘;윤응상
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.198.2-198.2
    • /
    • 2010
  • In this study, the COP variation with the duration of Ground Source Heat Pump (GSHP) systems operation was analyzed by experiment. This experimental facility was installed in residential house as a back-up device of solar thermal heating system. The capacity of heat pump is 2.5 kW with a vertical bore hole of 150m depth. The COP of GSHP is varied, depending on the ground temperature which is used as a heat source. The ground heat source temperature influencing heating COP is the soil or rock temperature which adjoin with geo-source heat exchanger. This temperature is decreased rapidly according to the operation duration of heat pump. As a result, COP of GSHP is decreased to 3 in one hour of continuous operation time.

  • PDF

링형 열교환기의 열전달특성에 관한 수치적 연구 (NUMERICAL STUDY ON HEAT TRANSFER CHARACTERISTICS FOR RING TYPE HEAT EXCHANGER)

  • 동와룡;최훈기;유근종
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 학술대회
    • /
    • pp.143-147
    • /
    • 2008
  • Numerical analysis is performed to find flow and heat transfer characteristics for ring type heat exchanger. 3-D numerical predictions are carried out for the ring type heat exchanger system with Reynolds number varying in the range of 1,000 and 10,000. From the prediction, streamwise velocity, pressure drop, flow rate and heat transfer coefficient are analyzed. It is also found that characteristics of pressure drop and heat transfer generally follow well proportional variations of Re$m^$for the wide range of Reynolds number considered in this study.

  • PDF

상변화물질을 이용한 자동차용 열저장 시스템의 성능을 위한 수치 해석 (Numerical Analysis on the Performance for Automobile Heat Storage System Using Phase Change Materical)

  • 이관수;김혁제;백창인;송영길;한창섭;김등진
    • 한국자동차공학회논문집
    • /
    • 제4권3호
    • /
    • pp.187-198
    • /
    • 1996
  • In this study, the performance of an automobile heat storage system using PCM is numerically simulated. For the analysis of system performance. The phase-change of the PCM and the transient forced convective heat transfer for the HTF are considered simultaneously as a conjugate problem. The phase-change behavior is effectively analyzed using a concept of thermal resistance. From the correlations of phase change rate and heat transfer due to the variations of flow rate of HTF around PCM, the automobile heat storage system performance is predicted. The present results amy be used as the fundamental information for the design of automobile heat storage system.

  • PDF

온도변화가 실린더 주위 열전달계수에 미치는 영향에 관한 실험적 연구 (Effect of Temperature Variations on Heat Transfer Coefficient in Crossflow over a Circular Cylinder)

  • 고상근
    • 설비공학논문집
    • /
    • 제4권2호
    • /
    • pp.137-145
    • /
    • 1992
  • coefficient precisely, experiments were carried out in three categories which contain the regime of (1) constant wire temperature (2) constant fluid temperature (3) constant temperature difference between wire and fluid. Measurements were made with electrically heated circular tungsten wire placed normal to air stream at the exit of jet. Heat transfer coefficient was increased with wire temperature increasing and decreased by fluid temperaure increasing and was not changed with varying both temperature if their difference were kept constant.

  • PDF

Disturbance due to internal heat source in thermoelastic solid using dual phase lag model

  • Ailawalia, Praveen;Singla, Amit
    • Structural Engineering and Mechanics
    • /
    • 제56권3호
    • /
    • pp.341-354
    • /
    • 2015
  • The dual-phase lag heat transfer model is employed to study the problem of isotropic generalized thermoelastic medium with internal heat source. The normal mode analysis is used to obtain the exact expressions for displacement components, force stress and temperature distribution. The variations of the considered variables through the horizontal distance are illustrated graphically. The results are discussed and depicted graphically.

Effects of Inlet Turbulence Conditions and Near-wall Treatment Methods on Heat Transfer Prediction over Gas Turbine Vanes

  • Bak, Jeong-Gyu;Cho, Jinsoo;Lee, Seawook;Kang, Young Seok
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제17권1호
    • /
    • pp.8-19
    • /
    • 2016
  • This paper investigates the effects of inlet turbulence conditions and near-wall treatment methods on the heat transfer prediction of gas turbine vanes within the range of engine relevant turbulence conditions. The two near-wall treatment methods, the wall-function and low-Reynolds number method, were combined with the SST and ${\omega}RSM$ turbulence model. Additionally, the RNG $k-{\varepsilon}$, SSG RSM, and $SST_+{\gamma}-Re_{\theta}$ transition model were adopted for the purpose of comparison. All computations were conducted using a commercial CFD code, CFX, considering a three-dimensional, steady, compressible flow. The conjugate heat transfer method was applied to all simulation cases with internally cooled NASA turbine vanes. The CFD results at mid-span were compared with the measured data under different inlet turbulence conditions. In the SST solutions, on the pressure side, both the wall-function and low-Reynolds number method exhibited a reasonable agreement with the measured data. On the suction side, however, both wall-function and low-Reynolds number method failed to predict the variations of heat transfer coefficient and temperature caused by boundary layer flow transition. In the ${\omega}RSM$ results, the wall-function showed reasonable predictions for both the heat transfer coefficient and temperature variations including flow transition onset on suction side, but, low-Reynolds methods did not properly capture the variation of the heat transfer coefficient. The $SST_+{\gamma}-Re_{\theta}$ transition model showed variation of the heat transfer coefficient on the transition regions, but did not capture the proper transition onset location, and was found to be much more sensitive to the inlet turbulence length scale. Overall, the Reynolds stress model and wall function configuration showed the reasonable predictions in presented cases.

Laminar Forced Convective Heat Transfer to Near-Critical Water in a Tube

  • Lee, Sang-Ho
    • Journal of Mechanical Science and Technology
    • /
    • 제17권11호
    • /
    • pp.1756-1766
    • /
    • 2003
  • Numerical modeling is carried out to investigate forced convective heat transfer to near-critical water in developing laminar flow through a circular tube. Due to large variations of thermo-physical properties such as density, specific heat, viscosity, and thermal conductivity near thermodynamic critical point, heat transfer characteristics show quite different behavior compared with pure forced convection. With flow acceleration along the tube unusual behavior of heat transfer coefficient and friction factor occurs when the fluid enthalpy passes through pseudocritical point of pressure in the tube. There is also a transition behavior from liquid-like phase to gas-like phase in the developing region. Numerical results with constant heat flux boundary conditions are obtained for reduced pressures from 1.09 to 1.99. Graphical results for velocity, temperature, and heat transfer coefficient with Stanton number are presented and analyzed.

固體粉末이 浮上된 二相亂流 管流動의 熱傳達에 관한 硏究 (Study on the two phase turbulent heat transfer of gas-solid supension flow in pipes)

  • 김재웅;김봉기;최영돈
    • 대한기계학회논문집
    • /
    • 제13권3호
    • /
    • pp.528-537
    • /
    • 1989
  • The objective of this paper is to investigate effects of the specific heat and the diameter of suspending particles on the heat transfer coefficient of two phase turbulent flow with suspension of solid particles in a circular tube with constant heat flux. Heat transfer coefficients of two phase turbulent flow in pipe with suspension of graphite powder were measured with variations of particle sizes and solid-gas loading ratio. Measured data were compared with predictions by numerical analysis in which the turbulece models are closed on the first order level. Results show that heat transfer coefficient increases with increasing the solid-gas loading ratio and the specific heat of suspending material, however, it decreases as the average diameter of particles decreases below $24{\mu}m$.