• Title/Summary/Keyword: heat transfer ratio

Search Result 868, Processing Time 0.034 seconds

Conjugate Heat Transfer Characteristics in a Ribbed Channel:Effect of Reynolds Number and Heat Capacity Ratio (요철이 설치된 채널 내에서 레이놀즈수와 열용량비에 따른 복합열전달 특성)

  • Song, Jeong-Chul;Ahn, Joon;Lee, Joon-Sik
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2297-2302
    • /
    • 2007
  • Numerical simulations are conducted to analyze conjugate heat transfer characteristics in a ribbed channel. In this simulation, the effects of Reynolds number and heat capacity of the solid channel wall on convective heat transfer are observed in the turbulent flow regime. In the case of the conducting wall against isothermal wall, the relative ratio of the thermal resistance between the solid wall and the flow field varies with Reynolds number. Thus the characteristics of the conjugate heat transfer are changed with the Reynolds number. Heat capacity ratio affects the temperature fluctuation inside solid wall. The temperature fluctuation inside the solid wall decreases with increasing the heat capacity of the solid wall so that the convective heat transfer increases. When the thermal conductivity ratio is smaller than 10, the effects of flow characteristics on heat transfer are changed.

  • PDF

Effect of Expansion Ratio on Contact Heat Transfer Coefficient in Fin-Tube Heat Exchanger (핀관 열교환기에서 확관율이 접촉열전달계수에 미치는 영향)

  • Lee, Sang-Mu;Park, Byung-Duck
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.1
    • /
    • pp.45-50
    • /
    • 2012
  • The plate fin and tube type of heat exchanger is widely used in air conditioner, and the heat exchanger is assembled by the mechanical expansion of copper tubes and fastening the aluminum fin. The objective of the present study is to investigate how the mechanical expansion of copper tube affects on the heat transfer performance of a plate fin and tube type heat exchanger. This study has been performed by experimental and numerical methods. The numerical and experimental results show that the tube expansion ratio has a influence on the heat transfer performance. Within the tested expansion ratio, the contact pressure shows the peak value and it decreases as the expansion ratio increases. Air-side heat transfer coefficient increases until the expansion ratio reaches 1.23, and then decreases with the similar pattern to the contact pressure. Also, contact heat transfer coefficient shows the maximum when the contact pressure is highest as well as the air-side heat transfer coefficient.

Experimental Study on In-Tube Condensation Heat Transfer Characteristics of Helically Coiled Spiral Tubes (코일형 나선 전열관의 내부 응축열전달 특성에 관한 실험 적 연구)

  • Park, Jong-Un;Gwon, Yeong-Cheol;Han, Gyu-Il
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.12
    • /
    • pp.1676-1683
    • /
    • 2001
  • An experimental study on condensation heat transfer characteristics of helically coiled spiral tubes was performed. The refrigerant is R-113. A refrigerant loop was established to measure the condensation heat transfer coefficients. Experiments were carried out uniform heat flux of 15 kw/m$^2$, refrigerant quality of 0.1∼0.9, curvature ratio of 0.016, 0.025 and 0.045. The curvature of a coil was defined as the ratio of the inside diameter of the tube to the diameter of the bending circle. To compare the condensation heat transfer coefficients of coiled spiral tubes, the previous results on coiled plain tubes and straight plain tubes were used. The results shows that the condensation heat transfer coefficients of coiled spiral tubes largely increase, as increasing Re and quality, compared to those of coiled plain tubes and straight plain tubes. As increasing degree of subcooling, however, the condensation heat transfer coefficients on coiled spiral tubes decrease. It is found that the heat transfer enhancement is more better than coiled plain tubes and straight plain tubes, as increasing curvature ratio.

A study on condensation heat transfer performance in microchannel tube (마이크로 채널 관에서의 응축 열전달 성능에 관한 연구)

  • Lee, Jeong-Kun
    • Design & Manufacturing
    • /
    • v.13 no.2
    • /
    • pp.22-29
    • /
    • 2019
  • This study conducted a research as to condensation heat transfer by using three types of flat micro multi-channel tubes with different processing of micro-fin and number of channels inside the pipes and different sizes of appearances. In addition, identical studies were conducted by using smoothing circular tubes with 5mm external diameter to study heat transfer coefficient. The condensation heat transfer coefficient showed an increase as the vapor quality and mass flux increased. However, each tube shows little differences compared to 400kg/m2s or identical in case the mass flux are 200kg/m2s and 100kg/m2s. The major reason for these factors is increase-decrease of heat transfer area that the flux type of refrigerant is exposed to the coolant's vapor with the effect of channel aspect ratio or micro-fin. In addition, the heat transfer coefficient was unrelated to the heat flux, and shows a rise as the saturation temperature gets lower, an effect that occurs from enhanced density. The physical factor of heat transfer coefficient increased as the channel's aspect ratio decreased. Additionally, the micro pin at the multi-channel type tube is decided as a disadvantageous factor to condensation heat enhancement factor. That is, due to the effect of aspect ratio or micro-fin, the increase-decrease of heat transfer area that the flux type of a refrigerant is exposed to the vapor is an important factor.

Experimental study on the heat transfer characteristics of separate type thermosyphon (분리형 써모사이폰의 열전달특성에 관한 실험적 연구)

  • 정기창;이기우;유성연
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.1
    • /
    • pp.22-32
    • /
    • 1998
  • Separate type thermosyphon has larger critical heat flux than non-loop type thermosyphon, because the flooding phenomenon of vapor and liquid occurring in non-loop one does not occur. The experimental study has been carried out separate type thermosyphon with single tube. An investigation of heat transfer characteristics in separate type thermosyphon is performed experimentally. Heat transfer coefficients in an evaporator and condenser were measured experimentally. The effects of liquid filling ratio, height difference, cooling temperature and heat flux on the heat transfer coefficients were examined. As a result, the reasonable range of the liquid filling ratio and the dependence of heat transfer on vapor temperature and heat flux are obtained.

  • PDF

NUMERICAL STUDY ON NATURAL CONVECTION HEAT TRANSFER IN A CAVITY CONTAINING A CENTERED HEAT CONDUCTING BODY (열전도 물체가 존재하는 캐비티내 자연대류 열전달에 대한 수치적 연구)

  • Myong H. K.;Chun T. H.
    • Journal of computational fluids engineering
    • /
    • v.10 no.3 s.30
    • /
    • pp.36-42
    • /
    • 2005
  • The present study numerically investigates the natural convection heat transfer in a 2-D square cavity containing a centered heat conducting body. Special emphasis is given to the influences of the Rayleigh number, the dimensionless conducting body size, and the ratio of the thermal diffusivity of the body to that of the fluid on the natural convection heat transfer in overall concerned region. The analysis reveals that the fluid flow and heat transfer processes are governed by all of them. Results for isotherms, vector plots and wall Nusselt numbers are reported for Pr = 0.71 and relatively wide ranges of the other parameters. Heat transfer across the cavity, in comparison to that in the absence of a body, are enhanced (reduced) in general by a body with a thermal diffusivity ratio less (greater) than unity. It is also found that the heat transfer attains a minimum as the body size is increased with a thermal diffusivity ratio greater than unity.

Influence of the Inclination Angle and Liquid Charge Ratio on the Condensation in Closed Two-Phase Thermosyphons with Axial Internal Low-Fins

  • Cho, Dong-Hyun;Han, Kyu-il
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.422-428
    • /
    • 2003
  • This study concerns the performance of the heat transfer of the thermosyphons having 60, 70, 80. 90 axial internal low-fins in which boiling and condensation occurr. Water, HCFC-141b and CFC-11 have been used as the working fluids. The operating temperature, the liquid charge ratio and the inclination angle of thermosyphons have been used as the experimental parameters. The heat flux and heat transfer coefficient at the condenser are estimated from experimental results. The experimental results have been assessed and compared with existing theories. As a result of the experimental investigation, it was found that the maximum heat flow rate in the thermosyphons is dependent upon the liquid charge ratio and inclination angle. A relatively high rate of heat transfer has been achieved by the thermosyphon with axial internal low-fins. The inclination of a thermosyphon has a notable influence on the condensation. In addition, the overall heat transfer coefficients and the characteristics at the operating temperature are obtained for the practical applications.

Experimental Study on Effect of Boiling Heat Transfer by Ultrasonic Vibration (초음파 진동이 비등열전달 과정에 미치는 영향에 관한 실험적 연구)

  • Na Gee-Dae;Oh Yool-Kwon;Yang Ho-Dong
    • Journal of Energy Engineering
    • /
    • v.15 no.1 s.45
    • /
    • pp.35-44
    • /
    • 2006
  • This study experimentally investigates effect of boiling heat transfer when ultrasonic vibration was applied. Under the wall temperature condition, temperature distribution in a cavity was measured during the boiling process and heat transfer coefficient of convection, sub-tooled boiling and saturated boiling states were measured with and without ultrasonic vibration, respectively. Also, the profiles of the pressure distribution in acoustic field measured by a hydrophone were compared with the augmentation ratios of heat transfer calculated by local heat transfer coefficient. Result of this study, heat transfer coefficient and augmentation ratio of heat transfer is higher with ultrasonic waves than without one. Especially, augmentation ratio of heat transfer is more increased the convection state than sub-cooled boiling and saturated boiling states. Acoustic pressure is relatively higher near ultrasonic transducer than other points where is no installed it and affects the augmentation ratio of heat transfer.

Effect of compression ratio on the heat dissipation of engine (압축비가 기관의 방열에 미치는 영향)

  • 이창식
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.5 no.1
    • /
    • pp.89-93
    • /
    • 1983
  • This paper describes on experimental investigation into the heat dissipation of Diesel engine, placing emphasis on the variations of compression ratio and cooling water temperature. The engine used for this test was a vertical single-cylinder four-cycle type, having a direct injection. Engine performance and heat transfer rates was tested under the compression ratio 14.3 and 17.4. In this study, the results showed that output and transfer rates of engine decrease in accordance with the decrease of compression ratio. The effect of cooling water temperature and injection delay of fuel on the heat dissipation brings about the decrease of heat transfer rates from cylinder to cooling water.

  • PDF

Effect of a Centered Conducting Body on Natural Convection Heat Transfer in a Two-Dimensional Cavity (2차원 캐비티내 자연대류 열전달에 대한 열전도 물체의 영향)

  • Myong H. K.;Kim J. E.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.79-84
    • /
    • 2005
  • The numerical solutions are examined on the effect of a centered heat conducting body on natural convection in a 2-D square cavity. The influences of the Rayleigh number, the dimensionless conducting body size, and the ratio of the thermal diffusivity of the body to that of the fluid have been investigated on the natural convection heat transfer in overall concerned region. The analysis reveals that the fluid flow and heat transfer processes are governed by all of them. Results for isotherms, vector plots and wall Nusselt numbers are reported for Pr = 0.71 and relatively wide ranges of the other parameters. Heat transfer across the cavity, in comparison to that in the absence of a body, are enhanced (reduced) in general by a body with a thermal diffusivity ratio less (greater) than unity. The heat transfer are also found to attain a minimum as the body size is increased.

  • PDF