• Title/Summary/Keyword: heat transfer capacity

Search Result 391, Processing Time 0.035 seconds

An easy-to-use design procedure for multipass plate heat exchangers based on the performance plots (성능선도에 의한 다통로 판형열교환기의 간이설계법)

  • 유호선;이근휘;방보청
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.2
    • /
    • pp.250-261
    • /
    • 1999
  • Based on a set of performance plots relating the design variables to the imposed conditions, an easy-to-use and versatile design procedure for chevron-type multipass plate heat exchangers is developed. In order for the present procedure to cover multipass with unequal passes and non-unity ratio of heat capacity rate, each stream number of transfer unit is adopted as the basic design variable instead of the exchanger number of transfer unit. It is found that there exists a unique relation between the stream and exchanger number of transfer units regardless of the chevron angle and the plate length. In addition, for a given value of the pressure drop the heat transfer area per unit mass flow rate can be expressed in terms of the stream number of transfer unit only. These two relationships in the form of simple plots constitute the framework of design. The sample results in comparison with the available data indicate that the present procedure includes the previous ones as a subset, and that every design method is affected essentially by the selection of specific correlations for the heat transfer coefficient and the friction factor.

  • PDF

Evaporation Heat Transfer Characteristics of Hydrocarbon Refrigerants R-290 and R-600a in the Horizontal Tubes

  • Roh, Geon-Sang;Son, Chang-Hyo;Oh, Hoo-Kyu
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.1
    • /
    • pp.74-83
    • /
    • 2007
  • This paper presents the experimental results of evaporation heat transfer coefficients of HC refrigerants (e.g. R290 and R600a). R-22 as a HCFCs refrigerant and R-l34a as a HFCs refrigerant in horizontal double pipe heat exchangers, having four different inner diameters of 10.07, 7.73, 6.54 and 5.80 mm respectively. The experiments of the evaporation process were conducted at mass flux of $35.5{\sim}210.4 kg/m^2s$ and cooling capacity of $0.95{\sim}10.1 kW$. The main results were summarized as follows : The average evaporation heat transfer coefficient of hydrocarbon refrigerants(R-290 and R-600a) was higher than the refrigerants, R-22 and R-l34a. In comparison with R-22 the evaporation heat transfer coefficient of R-l34a is approximately $-11{\sim}8.1 %$ higher. R-290 is $56.7{\sim}70.1 %$ higher and R-600a is $46.9{\sim}59.7 %$ higher. respectively. In comparison with experimental data and some correlations, the evaporation heat transfer coefficients are well predicted with the Kandlikar's correlation regardless of a type of refrigerants and tube diameters.

Thermal Analysis of Rotary Kiln Incinerator of Municipal Solid Waste (로타리 킬른형 도시 쓰레기 소각로의 전열해석)

  • 박상일;박영재
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.6
    • /
    • pp.2100-2108
    • /
    • 1991
  • A hear transfer model was developed to calculate the temperature distribution in the rotary kiln incinerator of municipal solid waste. The thermo-gravimetric characteristics of waste and the gas-to-waste heat transfer coefficient were determined by comparing the experimental results and model prediction. With this, heat transfer rates by existing heat transfer mechanisms were calculated to be compared each other. The effects of treatment capacity, calorific value of waste, and flow rate and temperature of combustion air on the temperature distribution in the rotary kiln incinerator were predicted by the model developed in this work.

Analysis of Convective Instability Induced by Buoyancy and Heat Transfer Characteristics for Natural Convetion in Nanofluids (나노유체의 부력에 의한 대류 불안정성 및 자연대류 열전달 특성 해석)

  • 김제익;강용태;최창균
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.8
    • /
    • pp.714-719
    • /
    • 2004
  • The objective of the present study is to investigate the convective instability driven by buoyancy and the heat transfer characteristics of nanofluids. Using the property relations of nanofluid expressed as a function of the volume fraction of nanoparticles, the ratio of nanofluid Rayleigh number to basefluid one, f is newly defined. The results show that the density and the heat capacity of nanoparticles act as a destabilizing factor. With an increase of ${\gamma}$ which is the ratio of thermal conductivity of nanoparticles to that of basefluid, the thermal instability of nanofluid decreases but the heat transfer rate increases.

A Study on the Heat Transfer Characteristics of the Radiant Chilled Ceiling Panel for Space Cooling (냉각된 복사천장패널의 열전달 특성에 관한 연구)

  • Lee, Tae-Won;Hwang, In-Ju
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.164-169
    • /
    • 2001
  • There is a chilled ceiling panel which carries out the air conditioning by radiation and convection between the room and cold ceiling panel surface. In order to verify heat transfer characteristics between them in cooling system with radiant chilled ceiling panel, analytical and experimental studies were performed for various design and operating parameters such as tube space and diameter, inlet water temperature, mass flow rate, cooling load, and so on. In this study, we found that the tube space and inlet water temperature were more important elements than the tube diameter and water flow rate for the performance of radiant chilled ceiling panel. The cooling capacity of the radiant chilled ceiling panel had the maximum value of $65W/m^{2}$ because the highest cooling capacity was limited by the condensation on the panel surface. The results of comparison between numerical analysis and experiment showed a resonable agreement qualitatively, especially for low cooling capacity.

  • PDF

Numerical Simulation of Ground Heat Exchanger Embedded Pile Considering Unsaturated Soil Condition (불포화 지반 조건을 고려한 파일 매입형 열교환기의 수치해석)

  • Choi, Jung-Chan;Lee, Seung-Rae
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.213-220
    • /
    • 2010
  • This study presents a numerical simulation model of vertical ground heat exchangers, considering unsaturated hydro static ground conditions induced by the ground water table fluctuation. Heat transfer in ground and grout is modeled by a 3-D FEM transient conductive heat transfer model, where heat transfer between circulating fluid and heat exchanging pipe is treated as 1-D quasi steady state forced convective elements. To take into account the unsaturated ground condition, soil thermal conductivity and heat capacity which are dependent on the matric suction are applied to ground elements. Parametric studies considering various ground water table conditions are conducted to investigate the influence of unsaturated hydro static ground condition on the mean heat exchange rate of ground heat exchanger. Simulation results considering water table fluctuation show 60~100% of mean heat exchange rate for a saturated soil condition and 125~208% of that for a dry soil condition. Thus consideration of unsaturated soil condition is substantially recommended for more accurate design and performance evaluation for ground heat exchangers.

  • PDF

Analysis of the Heat Transport Capacity of a Axial Grooved Heat Pipe for Solar Collector (태양열 집열기용 히트파이프의 열전달 특성에 대한 해석)

  • Chung, Kyung-Taek;Bae, Chan-Hyo;Suh, Jeong-Se;Kim, Byeong-Gi
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.317-322
    • /
    • 2005
  • This study is aimed to analyze the effects of heat pipe shape on the heat transfer in solar collector with a axial grooved heat pipe. In the design of a heat pipe. two of the most important criteria to be met are the operating temperature range and the maximum heat transport capacity, When the operating temperature range is known and the working fluid has been selected, the maximum heat transport capacity depends strongly on capillary pressure and liquid flow. The heat transport capacity of the heat pipe will depend on the geometry of the heat pipe, the wick structure. the vapor channel shape. groove number. cooling temperature. condenser length and pipe diameter. So various shapes are used for mathematical models of two-phase flow in grooved heat pipe. From the results. the adequate groove shape and scale are presented by considering the heat transport and capillary limitation.

  • PDF

Experimental Study on Heat Transfer Performance of Absorber with Variable Plate Types

  • M.A. Sarker;Moon, C.G.;Lee, H.S.;Kim, E.P.;Yoon, J.I.
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2004.05a
    • /
    • pp.201-212
    • /
    • 2004
  • An experimental study of the absorption process of water vapor into a lithium bromide solution was performed. For the purpose of developing high performance absorption chiller/hater utilizing lithium bromide solution as working fluid, it is important to improve the performance of absorber with the larger heat transfer area of the four heat exchangers. The experimental apparatus was composed of a plate type absorber which could increase the heat exchange area per unit volume to investigate more detail characteristics instead of the conventional type, that is, horizontal tube bundle type. The size of plate absorbers were made for 0.4m$\times$0.6m and the design objective of a refrigeration capacity was 1RT. In this experiment, three kinds of plate absorbers namely flat plate, dimple plate and groove plate were used. The obtained results were less than the design objective values, that is, the refrigeration capacity was about 0.3 ~0.4RT and the overall heat transfer coefficient was 500~600 kcal/$m^2$h$^{\circ}C$ at the standard conditions.

  • PDF

Sensitivity Enhancement for Thermophysical Properties Measurements via the Vacuum Operation of Heater-integrated Fluidic Resonators (가열 전극 통합 채널 공진기의 진공 환경 구동에 의한 열물성 측정의 민감도 향상)

  • Juhee Ko;Jungchul Lee
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.1
    • /
    • pp.39-43
    • /
    • 2023
  • Microscale thermophysical property measurements of liquids have been developed considering the increasing interest in the thermal management of cooling systems and energy storage/transportation systems. To accurately predict the heat transfer performance, information on the thermal conductivity, heat capacity, and density is required. However, a simultaneous analysis of the thermophysical properties of small-volume liquids has rarely been considered. Recently, we proposed a new methodology to simultaneously analyze the aforementioned three intrinsic properties using heater-integrated fluidic resonators (HFRs) in an atmospheric pressure environment comprising a microchannel, resistive heater/thermometer, and mechanical resonator. Typically, the thermal conductivity and volumetric heat capacity are measured based on a temperature response resulting from heating using a resistive thermometer, and the specific heat capacity can be obtained from the volumetric heat capacity by using a resonance densitometer. In this study, we analyze methods to improve the thermophysical property measurement performance using HFRs, focusing on the effect of the ambience around the sensor. The analytical method is validated using a numerical analysis, whose results agree well with preliminary experimental results. In a vacuum environment, the thermal conductivity measurement performance is enhanced, except for the thermal conductivity range of most gases, and the sensitivity of the specific heat capacity measurement is enhanced owing to an increase in the time constant.

NUMERICAL STUDY FOR COOLING CAPACITY IMPROVEMENT OF ENGINE ROOM ENCLOSURE SYSTEM (엔진실 차폐 시스템의 냉각성능 개선을 위한 수치적 연구)

  • Bae, Y.S.;Yoo, G.J.;Choi, H.K.
    • Journal of computational fluids engineering
    • /
    • v.14 no.2
    • /
    • pp.39-45
    • /
    • 2009
  • In engine room, proper enclosure system is preferable for reducing noise level but the enclosure system in the engine room causes bad influence on cooling performance due to poor ventilation. Cooling efficiency of the enclosure system can be improved by varying fan speed and proper flow path for ventilation. In this study, numerical analysis is performed to assess cooling effect of the enclosure system using finite volume method. The RNG k-$\varepsilon$ model is adopted for turbulence model along with heat exchanger model and porous media model for heat exchanger analysis, and moving reference frame model for rotational fan. Verification result shows reasonable agreement with experimental data. Analysis results show direct effect of velocity and temperature distribution on cooling ability in the enclosure system. Enclosure system of case B shows high heat transfer coefficient and has the smallest area ratio of opened flow passages which is good for noise level reduction.