• Title/Summary/Keyword: heat storage rate

Search Result 321, Processing Time 0.031 seconds

The Combined Effect of Enzyme Activity and Sensory Test of Blanching and Brining in Hot Solution and Trehalose Treatment on the Cucumber Kimchi for the Storage Period (데침과 열수의 침적과 Trehalose 처리가 오이 김치의 저장중 효소 활성의 변화와 관능 검사에 미치는 병용효과)

  • 이혜정;오봉희;남정혜
    • The Korean Journal of Food And Nutrition
    • /
    • v.14 no.5
    • /
    • pp.385-390
    • /
    • 2001
  • The enzyme activity and organoleptic properties of Korean pickled cucumber were studies for their changes during fermentation. The Korean pickled cucumber were prepared by blanching and high temperature soaking in salt solution and trehalose treament. The results showed that the effect of combined heat and trehalose treatment significantly reduced the fermentation rate and softening rate of texture while a rather rapid fermentation was for those preserved with salt. The effect of terhalose treatment enhanced fermentation and it was significantly reduced softening rate of texture by 2% treatment. The sensory evaluation of Korean pickled cucumber was found that combined heat treatment with blanching and hot solution had a positive effect for reduction of softening of cucumber tissue, however, odor and taste were not significantly affected. This study suggested that combined heat and trehalose treament might have potential for affording protection against softness of cucumber tissue during the fermentation time.

  • PDF

Studies on the Heat Storage Using the Hydration/Dehydration of the Calcined Dolomite (소성 Dolomite의 수화 및 탈수반응을 이용한 축열에 관한 연구)

  • Lee, Soo-Kag;Lee, Young-Sei;Kim, Jong-Shik
    • Applied Chemistry for Engineering
    • /
    • v.3 no.3
    • /
    • pp.507-515
    • /
    • 1992
  • This study was carried out to investigate the heat-storage/-release characteristics of the thermochemical reaction of the calcined dolomite and steam system for the application of regenerative heat exchangers with the packed bed shape experimental apparatus. The experimental data were obtained at the following conditions ; the hydration temperature was $150-400^{\circ}C$, the dehydration temperature was $700-800^{\circ}C$ and the steam mass flow rates were 294, 430 and 567 g/hr. In the present study, it was found that MgO of the calcined dolomite was not hydrated during the hydration process under the studied experimental conditions. Therefore, MgO of the calcined dolomite can be regard as an inert material. Because the reaction was proceeded from the packed bed input to packed bed output and from wall to center, it could be thought that the rate determining step is not the reaction itself but the heat transfer.

  • PDF

Studies on the Prevention of Greening in Crushed Garlic from Bulbs Stored in Low Temperature (마늘의 저온저장후 파쇄마늘 제조시 발생하는 녹변방지 연구)

  • Choi, Sun-Tay;Lim, Byung-Seon;Mok, Il-Gin;Lee, Chong-Suk;Chang, Kyu-Seob
    • Food Science and Preservation
    • /
    • v.7 no.3
    • /
    • pp.245-248
    • /
    • 2000
  • It was attempted to find a method to prevent greening of crushed garlic. The storage conditions and heat treatments before crushing were tested for the prevention of greening in crushed garlic. 'Namhae' garlic (sub-tropical type), 'Seosan' and 'Danyang' garlic (traditional) type for cool area) were stored in room temperature(20${\pm}5^{\circ}C$, low temperature(0$^{\circ}C$), and CA(O$_2\;3%,\;CO_2$ 5%) storage for five months, and their samples were crushed. The crushed garlic had no significant differences in greening according to the cultivars. Greening did not occur for the crushed garlic from bulbs stored either in room temperature or CA storage. Greening was the unique symptom observed in crushed garlic from bulbs stored in low temperature. For the prevention of greening, heat treatment was conducted at 40, 35 and 30$^{\circ}C$ prior to make the crushed garlic from bulbs which were stored in low temperature. The effective duration of heat treatment before crushing was 7 days at 30$^{\circ}C$, 3 days at 35$^{\circ}C$, and 1 days at 40$^{\circ}C$ Greening was most effectively prevented in 1 day at 40$^{\circ}C$ treatment. During the heat treatments, changes in enzymatic pyruvic acid content and sprouting rate were slightly observed in garlic bulbs treated at 40$^{\circ}C$ for 1 day.

  • PDF

A study on the construction characteristic of bath cryostat (Bath cryostat의 제작특성에 관한 연구)

  • Kim, G.Y.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.2
    • /
    • pp.138-145
    • /
    • 1993
  • The bath cryostat of cryogenic apparatuses which are generally used to study physical phenomena under low temperature and ultra low temperature has been desigened and constructed. The practical use of the cryostat is verified by the measurement of the storage life of liquid heloum and liquid nitrogen vessels. The cryostat consists of triple structure of high vacuum environment in order to minimize the evaporation rate of liquid helium and liquid nitrogen by thermal conductivity and radiant heat. The minimum thickness which can stand against inner and outer pressures is calculated from considering the strength of the material.

  • PDF

Optimum Design of Thermosyphon Solar Hot Water System (자연 대류형 태양열 온수기 최적 설계에 관한 연구)

  • Kang, Y.H.;Kwak, H.Y.;Lee, D.G.;Kang, M.C.
    • Solar Energy
    • /
    • v.18 no.4
    • /
    • pp.59-66
    • /
    • 1998
  • It was compared with experimental data to verify TRNSYS Model of the thermosyphon hot water system and the various simulations were conducted to optimize the component parameters of the system. To obtain consistent simulation results the system model, which could accurately describ the thermal storage tank temperature stratification and the friction head for mass flow rate, was used. The optimization of collector parameters(collector aspect ratio, riser numbers per header unit length), thermal storage tank parameters(ratio of tank length to tank diameter, heat exchanger type), system parameters(ratio of tank volume to collector area) was simulated by TRNSYS program. The simulation results indicate that the system performance is more effected by collector aspect ratio and the ratio of tank volume to collector area than the othor parameters.

  • PDF

Techno-Economic Analysis of Reversible Solid Oxide Fuel Cell System Couple with Waste Steam (폐스팀을 이용한 가역 고체산화물 연료전지의 기술적 경제적 해석)

  • GIAP, VAN-TIEN;LEE, YOUNG DUK;KIM, YOUNG SANG;AHN, KOOK YOUNG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.1
    • /
    • pp.21-28
    • /
    • 2019
  • Reversible solid oxide fuel cell (ReSOC) system was integrated with waste steam for electrical energy storage in distributed energy storage application. Waste steam was utilized as external heat in SOEC mode for higher hydrogen production efficiency. Three system configurations were analyzed to evaluate techno-economic performance. The first system is a simple configuration to minimize the cost of balance of plant. The second system is the more complicated configuration with heat recovery steam generator (HRSG). The third system is featured with HRSG and fuel recirculation by blower. Lumped models were used for system performance analyses. The ReSOC stack was characterized by applying area specific resistance value at fixed operating pressure and temperature. In economical assessment, the levelized costs of energy storage (LCOS) were calculated for three system configurations based on capital investment. The system lifetime was assumed 20 years with ReSOC stack replaced every 5 years, inflation rate of 2%, and capacity factor of 80%. The results showed that the exergy round-trip efficiency of system 1, 2, 3 were 47.9%, 48.8%, and 52.8% respectively. The high round-trip efficiency of third system compared to others is attributed to the remarkable reduction in steam requirement and hydrogen compression power owning to fuel recirculation. The result from economic calculation showed that the LCOS values of system 1, 2, 3 were 3.46 ¢/kWh, 3.43 ¢/kWh, and 3.14 ¢/kWh, respectively. Even though the systems 2 and 3 have expensive HRSG, they showed higher round-trip efficiencies and significant reduction in boiler and hydrogen compressor cost.

Experimental Study on the Effective Use of Thermally Stratified Hot Water Storage System (열성층 온수저장시스템의 효율적 이용에 관한 실험적 연구)

  • Pak, Ee-Tong
    • Solar Energy
    • /
    • v.13 no.2_3
    • /
    • pp.45-52
    • /
    • 1993
  • The benefits of thermal stratification in sensible heat storage were investigated for residential solar applications. The effect of increased thermal useful efficiency of hot water stored in an actual storage tank due to stratification has been discussed and illustrated through experimental data and computer simulation, which were taken by changing dynamic and geometric parameters. When the flow rate was 8 liter/min and ${\Delta}T=40^{\circ}C$ was $40^{\circ}C$, the useful efficiency(${\eta}_u$) was about 90% in case of using a distributor, but not using a distributor the useful efficiency(${\eta}_u$) was about 82%. So these kinds of distributor would be recommendable for a hot water storage system and residential solar energy application to increase useful efficiency(${\eta}_u$). In the case of the uniform circular distributor, when the flow rate was 8 liter/min partial mixing was decreased and a stable stratification was obtained. Furthermore, if the distrbutor was manufactured so that the flow is to be the same from all perforations in order to enhance stratification, it might be predicted that further stable stratification and higher useful efficiency(${\eta}_u$) are obtainable.

  • PDF

Study on Temperature Distribution in Cold Storage of Korean Garlic in Wire Mesh Pallet Container Using CFD Analysis (CFD 해석을 이용한 철망 파렛트 컨테이너 적입 마늘의 저온 저장고내 온도 분포 연구)

  • Dong-Soo Choi;Yong-Hoon Kim;Jin-Se Kim;Chun-Wan Park;Hyun-Mo Jung;Jong-Min Park
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.29 no.3
    • /
    • pp.195-201
    • /
    • 2023
  • Garlic (Allium sativum)is a major crop in most Asian countries, and its consumption in Asia-Pacific countries exceeds 90% of the global consumption. It contains beneficial ingredients and numerous essential nutrients, such as manganese, vitamin B6, and vitamin B1. Garlic demand is rising not only in Asian countries but also around the world. Particularly, garlic demand has been steadily increasing in European countries, such as Spain, France, Italy, and the American continent. In South Korea, 331,671 tons and 387,671 tons of garlic was produced in 2018 and 2019, respectively, making the country the fifth ranking garlic producer in the world, and the production has been increasing every year. In this study, the study on temperature distribution in cold storage of Korean garlic in folding wire mesh pallet container using CFD (Computational Fluid Dynamics) analysis was performed and Computations were based a commercial simulation software (ANSYS Workbenh Ver. 18.0). Considering the respiration heat of garlic, the decreasing rate of temperature in the area in contact with the cold air was fast due to the inflow of cold air inside, while the decreasing rate of temperature in the center of the pallet was very low. In order to maintain a uniform temperature distribution inside the agricultural product storage pallet in a low-temperature warehouse, it is considered desirable to install an air passageway to allow low-temperature air to flow into the wire mesh pallet.

Thermal Analysis on the LNG Storage Tank of LNG Bunkering System Applied with Double Shield Insulation Method (LNG 벙커링용 이중 단열적용 LNG 저장탱크 열해석)

  • Jung, Il-Young;Kim, Nam-Guk;Yun, Sang-Kook
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.4
    • /
    • pp.1-6
    • /
    • 2018
  • An LNG bunkering system stores LNG in a horizontal IMO's C-Type tank insulated with perlite powder, and $10^{-2}$ Torr vacuum in the annular space between the double walls. Current storage tanks have high heat leakage, evaporating over 2.0% daily. A more efficiently insulated storage tank reducing the evaporation rate is required to develope. This research carried out thermal analysis on a new effective insulation method, i.e. double shield insulation system, that separates high super vacuum in the annular space between two tanks with a perlite vacuum in the back side of outer tank. This highly efficient insulation system obtained an evaporation rate of 0.16% per day under a $10^{-4}$ Torr vacuum. Even if the space loses its vacuum, the new insulation system showed a lower evaporation rate of 5.23% than the present perlite system of 4.9%.

Analysis of the Energy Saving Effect for the External Insulation Construction by Building Load Calculation Method (건물 부하계산 프로그램을 이용한 외단열 시공의 에너지 절감 효과 분석)

  • Park, Jaejoong;Myeong, Jemin;Song, Doosam
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.3
    • /
    • pp.97-104
    • /
    • 2017
  • Reinforcement of insulation in apartment buildings reduces the heating and cooling energy consumption by lowering the heat transfer in the building envelope. There are differences between internal and external insulation methods in heat transmission properties. However, some building load calculation programs cannot analysis the differences between the two. This is because these programs do no account for the timelag or thermal storage effect of the wall according to the location of insulation. In this study, the heat transmission characteristics of internal and external insulation were analyzed by EnergyPlus, and heating and cooling energy demand was compared. The results showed that external insulation system had lower heating and cooling loads than internal insulation system. Also the heat transfer rate of external insulation is steadier than internal insulation. About 13.6% of heating and cooling energy demand decreased when the outdoor wall was finished with external insulation compared to the demand with internal insulation.