• Title/Summary/Keyword: heat storage rate

Search Result 319, Processing Time 0.023 seconds

Mm계 금속수소화물의 Co함량에 따른 열 및 물질전달특성 (Heat and Mass Transfer Properties of Mm-Based Metal Hydride upon Co Content)

  • 박찬교
    • 한국수소및신에너지학회논문집
    • /
    • 제15권2호
    • /
    • pp.144-151
    • /
    • 2004
  • The effect of the cobalt content on the thermodynamic and, heat and mass transfer properties of the $MmNi_{5-y}B_{y-z}C_z(y=0.5{\sim}1.5,\;z=0.5)$hydrogen storage alloys has been studied systematically. The P-C isotherms curves show that with increasing cobalt content in the alloys, the plateau pressure of the hydrogen absorption and desorption and enthalpy(${\Delta}H$) increases steeply and the plateau region becomes flat, while entropy(${\Delta}S$) decreases. Also at the constant cobalt content the hydrogen transfer rate decreases with the reaction temperature, while the initial reaction kinetics increases. But the initial reaction with hydrogen completes within 1min, although the reaction proceeds about 30minutes thereafter.

열펌프 열풍건조기를 이용한 표고버섯의 건조 품질특성 (Drying Quality Characteristics of Shiitake Mushroom by Heat Pump Hot-air Dryer)

  • 신은정;이호준
    • 한국지열·수열에너지학회논문집
    • /
    • 제11권4호
    • /
    • pp.22-27
    • /
    • 2015
  • Quality characteristics of Shiitake mushroom using two types of dryers, energy-efficient heat pump hot-air dryer and electric heater hot-air dryer were compared. Energy consumed during drying by heat pump hot-air dryer and electric heater hot-air dryer were 22.8 kWh and 28.9 kWh, respectively. Total polyphenol content of heat pump hot-air dryer and electric heater hot-air dryer after drying were $290.55{\pm}10.56ppm$ and $192.99{\pm}6.53ppm$, respectively. No differences were observed between dryers in reconstitution rate and browning ratio after drying. Also, there were no differences between dryers in color value and ${\Delta}E$ value after drying. Shiitake mushroom drying at $45^{\circ}C$ by heat pump hot-air dryer was proved to be more efficient in energy consumption than by electric heater hot-air dryer.

아이스슬러리형 빙축열 시스템을 이용한 냉각 시스템의 성능에 관한 실험적 연구 (Characteristic Analysis of the Cooling System Using Ice Slurry Type Heat Storage System)

  • 이동원;김정배
    • 에너지공학
    • /
    • 제20권1호
    • /
    • pp.30-35
    • /
    • 2011
  • 2중관형과 판형 열교환기에 에틸렌 클리콜-물 수용액으로 만들어진 아이스슬러리를 적용하는 경우의 유동 및 열적 특성을 규명하기 위하여 실험을 수행하였다. 아이스슬러리의 질량유속과 얼음 분율은 각각 800에서 3500 kg/$m^2s$과 0에서 25%이었다. 실험을 통해, 압력강하와 열전달율은 질량유속과 얼음 분율에 따라 증가하였다. 그러나 얼음 분율의 효과는 높은 질량유속 영역에서는 크지 않은 것으로 나타났다. 낮은 질량유속에서는 압력강하와 열전달율의 급속한 증가가 질량 유속에 관계되는 것으로 나타났다.

전자냉동 김치독의 열유동 및 성능 특성 (Heat Flow and Cooling Performance of an Electronic Refrigerating Kimchi Jar)

  • 송규석;김경환;이승철;고철균;이재헌;오명도
    • 대한기계학회논문집B
    • /
    • 제23권7호
    • /
    • pp.928-936
    • /
    • 1999
  • The electronic refrigerating kimchi jar operates with a low noise because it contains no compressor but it consumes more energy than that of an refrigerator with compressor. In this paper, the heat flow characteristics and cooling performance of an electronic refrigerating kimchi jar are studied by means of experiments. When the storage temperature is kept in a range of $-5.7^{\circ}C$ to $4.1^{\circ}C$. in the case of three ambient temperatures; $12.7^{\circ}C$, $22.3^{\circ}C$ and $32.2^{\circ}C$, the cooling performance of $20{\ell}$ kimchi jar is investigated. The experiments show that the temperature difference that exists between kimchi jar and its ambient provides a measure of the coefficient of performance of kimchi jar. It is also found that ratio of net pumping heat to the heat pumping rate of thermoelectric module is independent of the temperature difference.

응축폐열을 이용한 건조 및 온수장치에 관한 연구 (A Study on The Drying and Hot Water System Using Condensation Waste Heat)

  • 박노현;고하영;정진웅;강통삼
    • 대한설비공학회지:설비저널
    • /
    • 제15권4호
    • /
    • pp.362-371
    • /
    • 1986
  • In the normal Refrigeration process, the condensation heat of refrigerant s not been used because of its low-temperature waste heat. To recover the condensation waste heat of R-12 refrigerator, a drying and hot water system was designed and experimented. The results obtained were summarized as follows: 1. As the temperature a temosphere was increased, the temperature of discharge gas of compressor was increased. And the temperature was $80-84^{\circ}C$ for air condensing type and was $68-71^{\circ}C$ for water condensing type during summer. 2. The condensation waste heat could be obtained up to $50-55^{\circ}C$ of drying heat-source and Hot water in summer. In this case, recovered rate was about $73\%$. And the more temperature of drying Heat-source and Hot water were increased, the more a recovered rate were decreased. 3. When comparing drying characteristics of Agro-products in dryer of waste heat utilization and Hot air, there was no quality difference in products. But drying time of the former was 3 Hours longer than the latter. 4. The condensation waste heat of compressor could be applied into the drying of marine products, the predrying of agro-products and making hot water. And showed high possibility of the waste heat using in low-temperature storage.

  • PDF

태양열 시스템에 적용된 나선재킷형 축열조의 CFD 해석 (CFD Analysis for Spiral-Jacketed Thermal Storage Tank in Solar Heating Systems)

  • 남진현;김민철;김찬중;홍희기
    • 설비공학논문집
    • /
    • 제20권10호
    • /
    • pp.645-653
    • /
    • 2008
  • Spiral-jacketed thermal storage tanks can greatly simplify solar heating systems while maintaining the thermal performance at a similar level as conventional systems with an external heat exchanger. Proper design of the spiral-jacket flow path is essential to make the most of solar energy, and thus to maximize the thermal performance. In the present work, computational fluid dynamics (CFD) analysis was carried out for a spiral-jacketed storage tank installed in a solar heating demonstration system. The results of the CFD analysis showed a good agreement with experimentally determined thermal performance indices such as the acquired heat, collector efficiency, and mixed temperature in the storage tank. This verified CFD modelling approach can be a useful design tool in optimizing the shape of spiral-jacket flow path and the flow rate of circulating fluid for better performance.

에너지 다소비형 건물 축냉 시스템의 경제성에 관한 연구 (The Study of Economical Efficiency for the Ice Storage System of more Energy Consumption Building)

  • 이제묘
    • 설비공학논문집
    • /
    • 제24권10호
    • /
    • pp.733-738
    • /
    • 2012
  • It is important issue to reduce the electric energy to save the operating cost of HVAC system. Even if electrical energy is the clean energy, it is difficult and takes high cost for storage of electricity. These cause the high peak load of electric energy for HVAC in summer season. In korea, government impose the electric charge with several grade for the purpose of cut-off the peak load of electricity. Government has a policy to support to design and install the heat/ice storage system using midnight electricity. In this study, analysis of cooling load and operating characteristics for ice storage system are performed. And, also economical efficiency is compared between ordinary charge system of electricity and midnight rate charge of electricity. The systematic and economical supports are needed for expansion of usage of energy saving equipments.

Design and Analysis of Heat Exchanger Using Sea Water Heat Source for Cooling

  • Kim, MyungRae;Lee, JuHee;Yoon, JaeOck
    • KIEAE Journal
    • /
    • 제16권3호
    • /
    • pp.25-34
    • /
    • 2016
  • Purpose: The temperature in Seoul has risen 3 times more than the average global temperature increase for the past 100 years. Today, summer starts 15 days earlier than the early 20th century and is 32 days longer. This tendency causes rapid increase of cooling energy demand. Following this effect, seawater heat resources are to be used as an countermeasure for global warming. Incheon Port near the Western Sea has the lowest water temperature in the winter in South Korea in which it is suitable to use seawater cold heat resources. Method: The cold heat resource is gained from seawater when the water temperature is the lowest in the winter time and saved in a seasonal thermal storage. This can be used as cold heat resource in the summer time. A heat exchanger is essential to gain seawater cold energy. Due to this necessity, sea water heat resource heat exchangers are modeled by heat transfer equations and the fluid characteristics are analyzed. Also, a CFD (computational fluid dynamics) program is used to conduct simulation on the fluid characteristics of heat exchangers. The analyzed data of deducted from this process are comprehensively analyzed and discussed. Result: Regarding the performance of the heat exchanger, the heat exchanger was operated following the prediction within the range of heat transfer rate of minimum 3.3KW to maximum 33.6KW per device. In the temperature change analysis of the heat exchanger, fluid analysis by heat transfer equations almost corresponded to the temperature change by CFD simulation. Therefore, it is considered that the results of this study can be used as design data of heat exchangers.

열교환코일 내장형 태양열 축열조의 성능향상 (제1보 실증실험) (Performance Enhancement of Solar Thermal Storage Tank with Heat Exchange Coils (Part 1 : Verification Experiment))

  • 이욱재;홍희기
    • 설비공학논문집
    • /
    • 제27권4호
    • /
    • pp.213-219
    • /
    • 2015
  • A thermal storage tank with internal heat exchange coils is commonly used in solar thermal systems with a collector area below $100m^2$. The coils are installed in the lower part of the tank because the temperature of the upper part of the tank can drop if the outlet temperature of the collector becomes lower than the upper temperature of the tank, which is a kind of temperature reversal. As an alternative to the well-mixed storage tank with lower coil only, we have proposed a tank with lower and upper coils and have achieved superior thermal stratification in the tank, which results in increased collector efficiency and solar fraction. But, the phenomenon of temperature reversal was often observed in the tank when the load or solar radiation changed rapidly. In the present work, revised control was successfully applied, i.e., to heat only the lower coil using a three way valve if temperature reversal occurs and to operate the collector at a low flow rate when the quality of solar radiation is not good.

레토르트 파우치 고추장의 적정 고온 살균조건에 관한 연구 (Studies on the Optimal Sterilization Conditions of Red Pepper Paste Packed in Retort Pouch.)

  • 이신영;최국지;이상규
    • 산업기술연구
    • /
    • 제3권
    • /
    • pp.87-94
    • /
    • 1983
  • Heating characteristics of red pepper paste packed in report pouches of various thicknesses and their storage stability were investigated to determine the adequate processing conditions that good bacteriological safty and minimal quality changes could be obtained, when sterilized by using a steam-air system retort. A heat penetration into pouch-packed red pepper paste was carried out through by a conductive heat transfer, indicating a simple logarithmic heating curve, and the smaller thickness revealed the higher heat penetration rate, suggesting the possibility of high temperature-short time sterilization of red pepper paste. The processing conditions with Fo-value of 4.5 or higher were sufficient for keeping up bacterial safty, but based on C-value, better quality retention was obtained at pouch thickness of 15mm under the processing temperature of $120^{\circ}C$. Subsequent storage study revealed that the red pepper paste packed in 15mm and processed at $120^{\circ}C$ with Fo=4.5 could be held without any spoilage and overall acceptance change, when stored for 6 months at room temperature under the relative humidity of 70%. After 3 months storage in $38^{\circ}C$ under saturation humidity, overall acceptance of red pepper paste were judged not to be maintainable on the acceptable level, but it may be suggested that above the results could be kept up a desirable quality without any remarkable deterioration.

  • PDF