• 제목/요약/키워드: heat source

검색결과 2,351건 처리시간 0.024초

대형 Community 건물의 연료전지 구동 복합열원 하이브리드 히트펌프 냉.난방 시스템 성능 해석 (The Study on the Performance of the Fuel Cell Driven Compound Source Hybrid Heat Pump Heating and Cooling System to Large Community Building)

  • 변재기;정동화;최영돈
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2007년도 동계학술발표대회 논문집
    • /
    • pp.82-87
    • /
    • 2007
  • In the present study, the simulation on the annual performance evaluation of a renewable energy systems with fuel cell driven compound source hybrid heat pump systems is applied to the heating and cooling of large community building. The large community building has the economical advantage to apply heat pump cooling and heating systems the long period operation. If air and ground source hybrid heat pump systems are combined, COP of the system can be increased largely. Fuel cell driven compound source hybrid heat pump system can reduced the fuel cost as well as thermal storage tank sharply.

  • PDF

미세 레이저 용접에서 용융부 형상예측을 위한 열원의 방정식에 관한 연구 (a Study on Heat Source Equations for the Prediction of Weld Shape in Laser Micro-welding)

  • 장원석;나석주
    • Journal of Welding and Joining
    • /
    • 제18권4호
    • /
    • pp.76-81
    • /
    • 2000
  • In this research, various heat source equations that have been proposed in previous study were calculated and compared with new model in various laser parameters. This is to treat the problem of predicting, by numerical analysis, the thermo-mechanical behaviors of laser spot welding for thin stainless steel plates. A finite element code, ABAQUS is used for the heat transfer analysis with a three-dimensional plane assumption. Experimental studies if the laser spot welding have also bee conducted to validate the numerical models presented. The results suggest that temperature profiles and weld dimensions are varied according to the heat source of the laser beam. For this reason, it is essential to incorporate an accurate description of the heat source.

  • PDF

하천수 열원 이용 열펌프 시스템의 LCC 분석 (LCC Analysis of a Heat Pump System Using River Water)

  • 한상수;박차식;김용찬
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2009년도 하계학술발표대회 논문집
    • /
    • pp.1424-1428
    • /
    • 2009
  • The performance of a heat pump using river water as a heat source was compared with that of a conventional air-conditioner for cooling and a boiler system for heating. The heat pump system using river water considered the 1-stage cycle for cooling and the 2-stage cycle for heating. The COPs of the river water source heat pump were $0.5{\sim}1.1$ higher than those of the conventional system in the cooling season. The LCC of the river water source heat pump system was lower 13.5% and 32.4% than that of the conventional system I and II. In addition, when the initial cost ratios of the river water source heat pump system to the conventional system I and II were less than 1.2 and 1.4, respectively, an acceptable payback was found to be less than 5 years.

  • PDF

스택 폐열을 이용한 연료전지 자동차용 열펌프 시스템의 성능 특성에 관한 연구 (A Study on the Performance Characteristics of a Heat Pump System using Stack Wast Heat in Fuel Cell Vehicles)

  • 전병용;고원빈;박윤철
    • 설비공학논문집
    • /
    • 제28권8호
    • /
    • pp.325-330
    • /
    • 2016
  • This study was conducted to develop a heating system for a fuel cell-driven electric vehicle. The system consists of a compressor, an expansion device and three heat exchangers. A conventional air source heat exchanger is used as primary heat exchanger of the system, and an additional water source heat exchanger is used as a pre-heater to supply heat to the upstream air of the primary heat exchanger. On the other hand, the third heat exchanger consists of a water-to-refrigerant heat exchanger. The heat source of the pre-heater and the water-refrigerant heat exchanger is the waste heat from the fuel cell's stack. In the experiment, the indoor and the outdoor air temperature were fixed, and the compressor speed, EEV opening and waste heat temperature were varied. The results indicate that the $COP_h$ of the proposed system is 3.01 when the system is operating at a 1,200 rpm compressor speed, 50% EEV opening, and $50^{\circ}C$ waste heat source temperature in air pre-heater operation. However, when the system uses a water-refrigerant heat exchanger, the $COP_h$ increases to up to 9.42 at the same compressor speed and waste heat source temperature with 75% EEV openings.

Numerical Analysis of Welding Residual Stress Using Heat Source Models for the Multi-Pass Weldment

  • Bae, Dong-Ho;Kim, Chul-Han;Cho, Seon-Young;Hong, Jung-Kyun;Tsai, Chon-Liang
    • Journal of Mechanical Science and Technology
    • /
    • 제16권9호
    • /
    • pp.1054-1064
    • /
    • 2002
  • Numerical prediction of welding-induced residual stresses using the finite element method has been a common practice in the development or refinement of welded product designs. Various researchers have studied several thermal models associated with the welding process. Among these thermal models, ramp heat input and double-ellipsoid moving source have been investigated. These heat-source models predict the temperature fields and history with or without accuracy. However, these models can predict the thermal characteristics of the welding process that influence the formation of the inherent plastic strains, which ultimately determines the final state of residual stresses in the weldment. The magnitude and distribution of residual stresses are compared. Although the two models predict similar magnitude of the longitudinal stress, the double-ellipsoid moving source model predicts wider tensile stress zones than the other one. And, both the ramp heating and moving source models predict the stress results in reasonable agreement with the experimental data.

초기계획단계에서 열원시스템 선정을 위한 경제성 간이 평가법에 관한 연구 (A Study on the Simplified Economics Evaluation Method for Selecting a Heat Source System at the Pre-design Phase)

  • 박률;박종일
    • 설비공학논문집
    • /
    • 제16권11호
    • /
    • pp.1060-1067
    • /
    • 2004
  • To apply an analysis method of life cycle cost when assessing economics of equipment system, we should basically set up preconditions such as useful life, price escalation rate, interest rate, etc. as well as consider a calculation algorism of source energy and heat source system, which is a complex process for life cycle costing. For this reason, equipment designers tend to plan heat source systems, without a thorough investigation on economics of alternative systems at the pre-design phase. In this process, architectural designers should adopt a proper heat source system, which is one of the most important factors for planning an appropriate architectural design, through a discussion with equipment designers in a short time. In order to offer an evaluation method for equipment designers to analyze economics of an alternative heat source system easily at the pre-design phase, this research would define the simplified economics, evaluation method through analysis of existing papers for economics evaluation, and examine validity through comparison of simplified method values ($LCC_{EC}$) and life cycle costing values ($LCC_{15}$) for six alternative heat source systems.

저온축열용 포접화합물의 열물성에 관한 실험적 연구 (An Experimental Study on Thermal Properties of Clathrate for Cold Storage Applications)

  • 한영옥;정낙규;김진흥
    • 설비공학논문집
    • /
    • 제12권8호
    • /
    • pp.725-734
    • /
    • 2000
  • The objective of this paper is to investigate the thermal properties of TMA clathrate applicable to cold storage system for building air-conditioning. Especially, the test tube experiments are peformed by comparing and analyzing the temperature of phase change, specific heat and subcooling characteristic according to the variation of concentrations and temperature of heat source in TMA clathrate. The results are summarized as follows; 1) temperature of phase change is dropped as the temperature of heat source is lower, 2) the effect of subcooling suppression with about $9.3^{\circ}C$ is confirmed when the temperature of heat source is $-10^{\circ}C$ in case of 30wt%, while the temperature of subcooling is about $0^{\circ}C$ when the temperature of heat source is $-15^{\circ}C$ in case of 25, 29wt% and 30wt% . Thus, the effect of subcooling suppression is greater as the temperature of heat source is lower. Additionally, the concentrative study is needed on mass concentration causing the phase change without subcooling phenomenon when the temperature of heat source is $-15^{\circ}C$ Thus, it is concluded that TMA clathrate has proper properties as the cold storage medium for building air-conditioning.

  • PDF

건축물 용도별 내부 발열부하에 따른 수열원, 지열원 및 하이브리드 히트펌프 시스템의 에너지 성능 비교 분석 (Comparative Analysis of Energy Performance of Hydrothermal, Geothermal Source and Hybrid Heat Pump System According to Internal Heat Load for Office, School and Smart Farm)

  • 박시훈;민준기
    • 한국지열·수열에너지학회논문집
    • /
    • 제18권3호
    • /
    • pp.19-30
    • /
    • 2022
  • In this study, comparative analysis of energy performance in Taebaek city, a test area, by applying hydrothermal, geothermal source and hybrid heat pump system to office, school and smart farms with different internal heat loads. The conclusion is as follows. In the load characteristics by use of buildings, it was found that office had a large cooling load compared to heating load, school had a large heating load compared to cooling load, and smart farm had only cooling load year-round. Performance analysis of the heat pump system in office shows that the cooling COP of the hydrothermal source is 5.12% and the heating COP is 3.22% lower based on the geothermal source, the cooling COP of the hybrid is 0.41% higher, and the heating COP is the difference in performance appeared sparsely. The performance analysis of the heat pump system in school showed that the cooling COP of the hydrothermal source was 10.44% and the heating COP 3.22% lower based on the geothermal source, and the performance difference between the hybrid cooling and heating COP was insignificant. Heat pump system performance analysis in smart farm only occurred with cooling load. Based on geothermal sources, the cooling COP of the hydrothermal source was 46% and the cooling COP of the hybrid was 19.65%, respectively.

무공해 자동차용 수열원 히트펌프 시스템의 난방 성능에 관한 실험적 연구 (An Experimental Study on the Heating Performance of Coolant Heat Source Heat Pump System for Zero Emission Vehicles)

  • 이대웅
    • 한국자동차공학회논문집
    • /
    • 제22권7호
    • /
    • pp.57-62
    • /
    • 2014
  • This study presented the feasibility of a coolant heat-source heat pump system as an alternative heating system for electrically driven vehicles. Heat pumps are among the most environmentally friendly and efficient heating technologies in residential buildings. In various countries, electric mobiles devices such as EV, PHEV, and FCEV, have been mainly concerned with heat pumps for new mobile markets. The experiments herein were conducted for various ambient temperatures and coolant temperatures to reflect the winter season. The system, a coolant heat-source heat pump, consisted of an inside heat exchanger, an outside heat exchanger, a motor driven compressor, an electronic expansion valve, and plumbing parts. For the experimental results, the maximum heating capacity and air discharge temperature are up to 6.3 kW and $62^{\circ}C$ respectively at an ambient temperature of $10^{\circ}C$, and coolant at $10^{\circ}C$. However, at $-20^{\circ}C$ ambient temperature and $-10^{\circ}C$ coolant temperature, conditions were insufficient to warm the cabin as the air discharge temperature was $13^{\circ}C$.

고체입자를 이용한 열교환기에서의 유동 및 열전달의 유한요소해석 (Finite element analysis of flow and heat transfer in solid particle moving beds of heat exchanger)

  • 이완술;윤성기;박상일
    • 대한기계학회논문집A
    • /
    • 제22권4호
    • /
    • pp.743-752
    • /
    • 1998
  • Numerical analysis for the flow and heat transfer in solid particle moving beds of heat exchangers is presented. The solid particle flow through the bundle of heat source tubes by the gravitational force. The heat energy is transferred through the direct contact of particles with the heat source tubes. The viscous-plastic fluid model and the convective heat transfer model are employed in the analysis. The flow field dominantly influences the total heat transfer in a heat exchanger. As the velocities of solid particles around the heat source tubes increase, the amount of heat transfer from the tubes increases. Some examples are presented to show the performance of the numerical model. The flow effect on the heat transfer is also studied through the examples.