• 제목/요약/키워드: heat shock protein

Search Result 607, Processing Time 0.029 seconds

Antiviral and Anti-Inflammatory Activities of Pochonin D, a Heat Shock Protein 90 Inhibitor, against Rhinovirus Infection

  • Song, Jae-Hyoung;Shim, Aeri;Kim, Yeon-Jeong;Ahn, Jae-Hee;Kwon, Bo-Eun;Pham, Thuy Trang;Lee, Jongkook;Chang, Sun-Young;Ko, Hyun-Jeong
    • Biomolecules & Therapeutics
    • /
    • v.26 no.6
    • /
    • pp.576-583
    • /
    • 2018
  • Human rhinoviruses (HRV) are one of the major causes of common cold in humans and are also associated with acute asthma and bronchial illness. Heat-shock protein 90 (Hsp90), a molecular chaperone, is an important host factor for the replication of single-strand RNA viruses. In the current study, we examined the effect of the Hsp90 inhibitor pochonin D, in vitro and in vivo, using a murine model of human rhinovirus type 1B (HRV1B) infection. Our data suggested that Hsp90 inhibition significantly reduced the inflammatory cytokine production and lung damage caused by HRV1B infection. The viral titer was significantly lowered in HRV1B-infected lungs and in Hela cells upon treatment with pochonin D. Infiltration of innate immune cells including granulocytes and monocytes was also reduced in the bronchoalveolar lavage (BAL) by pochonin D treatment after HRV1B infection. Histological analysis of the lung and respiratory tract showed that pochonin D protected the mice from HRV1B infection. Collectively, our results suggest that the Hsp90 inhibitor, pochonin D, could be an attractive antiviral therapeutic for treating HRV infection.

Effect of Environmental Stress on Morphological Change of an Extremely Cadmium-Tolerant Yeast, Hansenula anomala B-7

  • Huh, Nam-Eung;Choi, Nack-Shick
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.1
    • /
    • pp.70-77
    • /
    • 1999
  • An extremely cadmium-tolerant budding yeast, Hansenula anomala B-7 underwent a morphological switch in response to either heat shock treatment or cadmium stress, respectively. It exhibited a morphological transition from a unicellular yeast form to a pseudohyphae-like coagulation when subjected to prolonged heat shock treatment. In contrast, the yeast cells showed an irregularity in surface morphology when given thermal stress for a short time. Patterns of proteins expressed in the pseudohyphae-like cells demonstrated that several proteins were overexpressed while others were underexpressed in comparison with those prepared from the cells in the yeast form. It was a striking feature, however, that nearly 40% of the proteins extracted from the cells in the pseudohyphae form appeared to be composed of a single polypeptide. This polypeptide was apparently overexpressed during the pseudohyphae phase and its molecular weight was estimated to be 58 kDa according to SDS-PAGE analysis. However, a significant level of the protein was not observed in the cells before transition to pseudohyphae. The architecture of the cell shape was also damaged when incubated in a medium containing more than 1,000 ppm (8.9mM) of cadmium ions, although able to proliferate at a slow rate. However, the irregularity in the cell morphology exerted either by the brief heat shock treatment or by the cadmium stress with the high concentrations of the metal ions was not repaired, even though the damaged cells were allowed to grow for sufficient time in fresh, cadmium-free medium.

  • PDF

Effect of Heat Shock Protein 72 on the Generation of Reperfusion Arrhythmias

  • Chang, Moon-Jun;Na, Heung-Sik;Nam, Hyun-Jung;Pyun, Kyung-Sik;Hong, Seung-Kil
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.4 no.4
    • /
    • pp.319-324
    • /
    • 2000
  • The causal relationship between heat shock protein (HSP) and second window of cardioprotective effect is still undetermined. In the present study, we assessed whether HSP-producing substances, amphetamine and ketamine, afforded protection against reperfusion-induced ventricular fibrillation (VF) and these protective effect remained after the inhibition of HSP72 production by quercetin, a mitochondrial ATPase inhibitor. Adult mongreal male cats $(n=60,\;2.5{\sim}4\;kg)$ were used in this study. Experimental animals were divided into five groups; control group (n=15), amphetamine ('A', n=11) group, ketamine ('K', n=9) group, amphetamine-ketamine ('AK', n=16) group and amphetamine-ketamine-quercetin ('AKQ', n=9) group. Twenty-four hours after the drug treatment, an episode of 20-min coronary artery occlusion was followed by 10-min reperfusion. The incidence of reperfusion-induced VF in the AK and AKQ groups was significantly lower than that in control group (p<0.01). After the ischemia/reperfusion procedure, western blot analysis of HSP72 expression in the myocardial tissues resected from each group was performed. HSP72 production in the AK group was marked, whereas HSP72 was not detected in the AKQ and control groups. These results suggest that the suppressive effect against reperfusion-induced VF induced by amphetamine and ketamine is not mediated by myocardial HSP72 production but by other mechanisms.

  • PDF

Roles of ERK and NF-${\kappa}$ B in Interleukin-8 Expression in Response to Heat Shock Protein 22 in Vascular Smooth Muscle Cells

  • Kang, Seung-Hun;Lee, Ji-Hyuk;Choi, Kyung-Ha;Rhim, Byung-Yong;Kim, Koan-Hoi
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.12 no.4
    • /
    • pp.171-176
    • /
    • 2008
  • Heat shock proteins (HSPs) serve as molecular chaperones and play a role in cell protection from damage in response to stress stimuli. The aim of this article is to investigate whether HSP22 affects IL-8 expression in vascular smooth muscle cells (VSMCs), and which cellular factors are involved in the HSP-mediated IL-8 induction in that cell type in terms of mitogen activated protein kinase (MAPK) and transcription element. Exposure of aortic smooth muscle cells (AoSMCs) to HSP22 not only enhanced IL-8 release but also induced IL-8 transcript via promoter activation. HSP22 activated ERK and p38 MAPK in AoSMCs. HSP22-induced IL-8 release was inhibited by U0126, but not by SB202190. A mutation in the IL-8 promoter region at the binding site of NF-${\kappa}$ B, but not AP-1 or C/EBP, impaired promoter activation in response to HSP22. Delivery of I ${\kappa}$ B, but not dominant negative c-Jun, lowered HSP22-induced IL-8 release from AoSMCs. These results suggest that HS P22 induces IL-8 in VSMCs via ERK1/2, and that transcription factor NF-kB may be required for the HSP22-induced IL-8 up-regulation.

Cumulative Mortality in Striped Beakperch, Oplegnathus fasciatus Infected with Red Sea Bream Iridovirus (RSIV) at Different Water Temperature and Identification of Heat Shock Protein 70 (수온별 Red Sea Bream Iridovirus (RSIV) 인위감염에 따른 돌돔의 누적폐사 및 Heat Shock Protein (HSP) 70의 동정)

  • Kim, Seok-Ryel;Jeong, Byeong-Mun;Jung, Sung-Ju;Kitamura, Shin-Ichi;Kim, Du-woon;Kim, Do-Hyung;Oh, Myung-Joo
    • Journal of fish pathology
    • /
    • v.21 no.1
    • /
    • pp.13-20
    • /
    • 2008
  • This study evaluates the pathogenicity in striped beakperch, Oplegnathus fasciatus infected with red sea bream iridovirus (RSIV) at different water temperature (17°C, 20°C, 25°C and 27°C). When the fish group was infected with RSIV at 17°C and 20°C, cumulative mortality did not show any significant difference with control group. In contrast, the case at 25°C and 27°C, cumulative mortality reached more than 80%. However, RSIV was detected from all of the fish in each temperature. To confirm a relationship between temperature change and heat shock protein (HSP), partial HSP70 cDNA was isolated from striped beakperch.

Transformation of Orchardgrass (Dactylis glomerata L.) with Heat Shock Protein Gene (Heat Shock Protein 유전자를 이용만 오차드그래스의 형질전환)

  • 이효신;이인애;김미혜;손대영;정민섭;조진기
    • Korean Journal of Plant Tissue Culture
    • /
    • v.28 no.2
    • /
    • pp.75-79
    • /
    • 2001
  • An experiment was carried out to introduce OsHSP17.9, a low molecular HSP gene isolated from rice plant to orchardgrass (Dactylis glomerata L.) using Agrobacterium. Mature seed-derived calli of orchardgrass were co-cultured with Agrobacterium tumefaciens EHA101 harboring the plasmid pIG-HSP17.9 for transformation. Calli selected by hygromycin were transferred to N$_{6}$ medium containing 1 mg/L NAA, 5 mg/L kinetin, 250 mg/L cefotaxime and 50 mg/L hygromycin and several hygromycin resistant plants were obtained. Stable incorporation of the introduced OsHSP17.9 to the genome of the hygromycin resistant plants was confirmed by PCR and Southern blot analysis. Transformation efficiency was variable between cultivars in which it was 16.5% in Potomac and 8.0% in Frontier. Constitutive expression of the transgene in the transformed orchardgrass tissues was identified by Northern blot analysis but transcript levels were different among individual plants.s.

  • PDF

Classification of Biological Effect of 1,763 MHz Radiofrequency Radiation Based on Gene Expression Profiles

  • Im, Chang-Nim;Kim, Eun-Hye;Park, Ae-Kyung;Park, Woong-Yang
    • Genomics & Informatics
    • /
    • v.8 no.1
    • /
    • pp.34-40
    • /
    • 2010
  • Radiofrequency (RF) radiation might induce the transcription of a certain set of genes as other physical stresses like ionizing radiation and UV. To observe transcriptional changes upon RF radiation, we exposed WI-38, human lung fibroblast cell to 1763 MHz of mobile phone RF radiation at 60 W/kg of specific absorption rate (SAR) for 24h with or without heat control. There were no significant changes in cell numbers and morphology after exposure to RF radiation. Using quantitative RT-PCR, we checked the expression of three heat shock protein (HSP) (HSPA1A, HSPA6 and HSP105) and seven stress-related genes (TNFRSF11B, FGF2, TGFB2, ITGA2, BRIP1, EXO1, and MCM10) in RF only and RF/HS groups of RF-exposed cells. The expressions of three heat shock proteins and seven stress-related genes were selectively changed only in RF/HS groups. Based on the expression of ten genes, we could classify thermal and non-thermal effect of RF-exposure, which genes can be used as biomarkers for RF radiation exposure.

Constitutive Expression of Small Heat Shock Protein Increases Thermotolerance in Transgenic Plant (저 분자량 Heat Shock Protein의 항상적 발현에 의한 형질전판 식물체의 고온내성 증가)

  • 이병현
    • Korean Journal of Plant Tissue Culture
    • /
    • v.27 no.1
    • /
    • pp.13-18
    • /
    • 2000
  • To investigate the function of chloroplast small HSP, transgenic tobacco plants (Nicotiana tabacum L. cv. Samsun) that constitutively overexpress the chloroplast small HSP (NtHSP21) from N. tabacum cv. Petit Havana SR1 were generated. Five homozygous lines of transformants showing different constitutive expression levels of the NtHSP21 were selected. To determine whether constitutive overexpression of NtHSP21 protein affects thermotolerance, wild-type and transformants were grown in Petri dishes, heat-stressed at 52$^{\circ}C$ for 45 min, and then incubated in normal growth condition. When heat-stressed wild-type plantlets were incubated at $25^{\circ}C$, leaf color gradually became white and all trio plantlets finally died within a week. As for the transformants, however, more than 70% of them remained green and survived under the conditions in which all the wild-type plants were dying. It was also found that the levels of NtHSP21 were correlated with the degree of thermotolerance. These results suggest that the NtHSP21 protein in transformants is responsible for the increase in thermotolerance.

  • PDF

A IMMUNOHISTOCHEMICAL STUDY ON HEAT SHOCK PROTEIN IN ORAL CARCINOGENESIS IN HAMSTER (햄스터 구강암 발생 과정에서 Heat Shock Protein에 관한 면역조직화학적 연구)

  • Choi, Kyu-Hwan;Lee, Dong-Keun;Kim, Eun-Chul;Jeong, Chang-Joo
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.23 no.2
    • /
    • pp.124-136
    • /
    • 2001
  • Heat shock protein (HSP) expression is unregulated in tumor cells and, HSP expression is likely marker of the malignant potential of oral epithelial lesion. Furthermore, the 70kDa HSP is implicated in the degree of tumor differentiation, the rate of tumor proliferation and the magnitude of the anti-tumor Immune response. Accordingly, the distribution and intensity of HSP70 and HSP47 expression was assessed in the DMBA induced oral carcinogenesis in hamster. Golden Syrian hamsters which were 3 months-age and $90{\sim}120g$ were collected. 9,10-dimethyl -1,2-benzanthracene (DMBA) in a 0.5% solution in mineral oil was painted on the buccal pouch mucosa 3 times per week in the study group. In each control and experimental groups of 6, 8, 10, 12, 14, 16, 18, 20 weeks, specimen were sectioned for immunohistochemical study with anti-HSP47 and anti-HSP70 antibody. The following results were obtained. 1. HSP47 positive cells were race or negative of normal oral mucosa, increased mildly in basal and suprabasal basal layer, and spinous cell layer after experimental 6 weeks (dysplastic or CIS stage). In CIS stage, HSP47 expression is prominent in dysplastic free or normal adjacent epithelium. 2. HSP47 positive cells in connective tissue were mainly inflammatory cells, which is gradually increased from control to precancerous and cancer stage. But HSP47 positive cells after 14 weeks were decreased, especially normal and cancer adjacent epithelium. 3. The positive staining cells of HSP70 in control, dysplastic, and CIS stage were not seen. But they were mild findings in basal layer and moderate findings in spinous layer after experimental 14 weeks (cancer stage). 4. HSP70 positive cells were increased in precancerous and cancer stage than control group in connective tissue. After experimental 16 weeks, we could not find the HSP expression in cancer cells according to cancer differentiation or cancer stage. It is concluded that HSP70 or HSP47 expression is not a definitive marker of oral malignancy or malignant potential. However, with further development, HSP immunoreactivity may be valuable as an adjunct to conventional histology for assessing the malignant potential of oral mucosal lesions.

  • PDF

Molecular Cloning and Expression Analysis of Red-spotted Grouper, Epinephelus akaara Hsp70 (수온변화에 따른 붉바리(Epinephelus akaara)의 heat shock protein (Hsp) 70 mRNA 발현)

  • Min, Byung Hwa;Hur, Jun Wook;Park, Hyung Jun
    • Journal of Life Science
    • /
    • v.28 no.6
    • /
    • pp.639-647
    • /
    • 2018
  • A new heat shock protein 70 was identified in red-spotted grouper (Epinephelus akaara) based on an expression analysis. The cDNA of red-spotted grouper Hsp70 (designated RgHsp70) was cloned by the rapid amplification of cDNA ends (RACE) techniques. The full-length of RgHsp70 cDNA was 2,152 bp, consisting of a 5'-terminal untranslated region (UTR) of 105 bp, a 3'-terminal UTR of 274 bp, and an open reading frame (ORF) of 1,773 bp that encode a polypeptide of 590 amino acids with a theoretical molecular weight of 64.9 kDa and an estimated isoelectric point of 5.2. Multiple alignment and phylogenetic analyses revealed that the RgHsp70 gene shares a high similarity with other Hsp70 fish genes. RgHsp70 contained all three classical Hsp70 family signatures. The results indicated the RgHsp70 is a member of the heat shock protein 70 family. RgHsp70 mRNA was predominately expressed in the liver, with reduced expression noted in the head-kidney tissues. The expression analysis of different water temperatures (21, 18, 15 and $12^{\circ}C$) for sampled livers revealed that expression gradually increased at $12^{\circ}C$ compared to $21^{\circ}C$. In this study, the effects of water temperature lowering on the physiological conditions were investigated, and the results revealed that novel RgHsp70 may be an important molecule involved in stress responses.