• Title/Summary/Keyword: heat release

Search Result 1,076, Processing Time 0.024 seconds

Combustion Properties of Major Wood Species Planted in Indonesia (인도네시아 주요 조림수종의 연소특성)

  • Park, Se-Hwi;Jang, Jae-Hyuk;Hidayat, Wahyu;Qi, Yue;Febrianto, Fauzi;Kim, Nam-Hun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.6
    • /
    • pp.768-776
    • /
    • 2015
  • This study was performed to understand combustion properties four major Indonesian wood species such as Albizia, Gmelina, Mangium and Mindi were investigated by cone-calorimeter for better utilization of theses wood species. Heat release rate (HRR), total heat release (TSR), specific mass loss rate (SMLR), effective heat of combustion (EHC), time to ignition (TTI), flame time (FT), specific extinction area (SEA), smoke production rate (SPR) and CO compound production rate were measured. HRR, THR and FT were proportional to the density of woods. Albizia showed the highest HRR, while Mindi had the lowest HRR. For SPR, Albizia showed the highest value due to its higher SEA. On the other hand, Mindi had the lowest SPR due to a lower SEA value. The highest smoke emission was for Albizia at the beginning of combustion. After 300 seconds, smoke emission of Gmleina and Mangium was increased greatly. Mangium and Mindi showed the highest total carbon dioxide emission. Expecially, Gmelina released the highest carbon monoxide during the combustion period and presented three times higher $CO/CO_2$ ratio than those of other species due to incomplete combustion.

Combustion Characteristics of Bamboo Charcoal Boards (대나무숯 성형보드의 연소특성)

  • Park, Sang-Bum;Park, Joo-Saeng
    • Journal of the Korean Wood Science and Technology
    • /
    • v.40 no.1
    • /
    • pp.19-25
    • /
    • 2012
  • The fire retardant bamboo charcoal (BC) boards were manufactured for interior building materials in this study, The BC boards were manufactured by mixing and pressing of the bamboo charcoal, expanded vermiculite, and inorganic binder. The combustion behaviors of the BC boards were investigated using a cone calorimeter at an incident heat flux of 50 kW/$m^2$. Three building materials (plywood, BC board of Japan, and gypsum board) were used to observe the burning behaviors of weight loss, total heat release rate, and maximum heat release rate. Surface test and toxicity evaluation of the BC board were also conducted. The weight loss of the BC board (12.0%) was lower than the nonflammable gypsum board (15.6%) after burning of 10 min. Total heat release of the BC was 3 MJ/$m^2$ (KS standard 8 MJ/$m^2$) and total heat release rate of the BC was 20 kW/$m^2$ (KS standard 200 kW/$m^2$). Therefore, the BC boards were adjustable for the third-grade flame retardant building materials. External appearance change and mouse toxicity were not found in the BC boards after the combustion test.

Mathematical and Experimental Study for Mixed Energetic Materials Combustion in Closed System

  • Kong, Tae Yeon;Ryu, Byungtae;Ahn, Gilhwan;Im, Do Jin
    • Korean Chemical Engineering Research
    • /
    • v.60 no.2
    • /
    • pp.267-276
    • /
    • 2022
  • Modelling the energy release performance of energetic material combustion in closed systems is of fundamental importance for aerospace and defense application. In particular, to compensate for the disadvantage of the combustion of single energetic material and maximize the benefits, a method of combusting the mixed energetic materials is used. However, since complicated heat transfer occurs when the energetic material is combusted, it is difficult to theoretically predict the combustion performance. Here, we suggest a theoretical model to estimate the energy release performance of mixed energetic material based on the model for the combustion performance of single energetic material. To confirm the effect of parameters on the model, and to gain insights into the combustion characteristics of the energetic material, we studied parameter analysis on the reaction temperature and the characteristic time scales of energy generation and loss. To validate the model, model predictions for mixed energetic materials are compared to experimental results depending on the amount and type of energetic material. The comparison showed little difference in maximum pressure and the reliability of the model was validated. Finally, we hope that the suggested model can predict the energy release performance of single or mixed energetic material for various types of materials, as well as the energetic materials used for validation.

Test of Heat Recovery Performance of a Microturbine (마이크로터빈의 열회수 성능시험)

  • Jeon, Mu-Sung;Lee, Jong-Jun;Kim, Tong-Seop;Chang, Se-Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.8
    • /
    • pp.629-635
    • /
    • 2008
  • Recently, microturbines have received attention as a small-scale distributed power generator. Since the exhaust gas carries all of the heat release, the microturbine CHP (combined heat and power) system is relatively compact and easy to maintain. Generating hot water or steam is usual method of heat recovery from the microturbine. In this work, a heat recovery unit producing hot water was installed at the exhaust side of a 30 kW class microturbine and its performance characteristics following microturbine power variation was investigated. Heat recovery performance has been compared for different operating conditions such as constant hot water temperature and constant water flow rate. In particular, the influence of water flow rate and hot water temperature on the recovered heat was analyzed.

Accuracy Improvement for Measurement of Heat of Fusion by T-history Method (T-history법에 의한 잠열량 측정 정확도의 향상)

  • 박창현;백종현;강채동;홍희기
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.8
    • /
    • pp.652-660
    • /
    • 2003
  • T-history method, measuring heat-of-fusion of phase change material (PCM) in sealed tubes, has the advantages of a simple experimental device and no requirements in sampling process. However, a degree of supercooling used in selecting the range of latent heat release and neglecting sensible heat during the phase change process can cause significant errors in determining the heat of fusion in the original method, which has been improved in order to predict better results by us. In the present study, the modified method was applied to a variety of PCM such as paraffin and lauric acid having very small or no supercooling with a satisfactory precision. Also the selection of inflection point and temperature measurement position was fumed out not to affect the accuracy of heat-of-fusion significantly. As a result, the method can provide an appropriate means to assess a new developed PCM by cycle test even if a very accurate value cannot be obtained.

Effect of Premixing Condition on the Combustion and Emission Characteristics of HCCI Diesel Engine (균일 예혼합 압축 착화 디젤 엔진의 예혼합 조건 변화에 따른 연소 및 배기 특성)

  • Kim, Myung-Yoon;Hwang, Seok-Jun;Kim, Dae-Sik;Lee, Ki-Hyung;Lee, Chang-Sik
    • 한국연소학회:학술대회논문집
    • /
    • 2003.05a
    • /
    • pp.7-12
    • /
    • 2003
  • The purpose of this work is to investigate the effect of premixing condition on the combustion and exhaust emission characteristics in a HCCI diesel engine. To form homogeneous charge before intake manifold, the premixed fuel is injected into premixed tank by GDI injection system and the premixed fuel is ignited by direct injected diesel fuel. But in the case of high intake air temperature, premixed fuel is auto-ignited before diesel combustion and soot emission is increased. In the case of light load condition, the BSFC is improved by intake air heating because increased air temperature promoted the combustion of premixed mixture. NOx and smoke concentration of exhaust emissions are reduced compared to conventional diesel engine. The combustion characteristics of the HCCI diesel engine such as combustion pressure, rate of heat release, and exhaust emission characteristics are discussed.

  • PDF

Study of Standard Design Fire Curve of Various Railcar (철도차량별 표준 설계화재곡선 연구)

  • Lee, Duck-Hee;Park, Won-Hee;Jung, Woo-Sung;Kim, Chi-Hun
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1426-1431
    • /
    • 2011
  • A study on the standardization of design fire HRR(heat release rate) curve was conducted for various railcar from the fire simulation or the fire tests. These standard curves are listed on the tunnel fire safety manual which will be used for the QRA(quantitative risk analysis) process of the long railway tunnels. The design fire curve is based with four simple factor representing the key of fire curve characteristics. Flashover time, maximum HRR and burn out time are the key factors of the design fire curve. Specially total heat release is decided by the burnable material amount in the car.

  • PDF

Combustion Characteristics of Fire Retardants Treated Domestic Wood (난연처리 국산 침엽수재의 연소특성 분석)

  • Seo, Hyun Jeong;Hwang, Wuk;Lee, Min Chul
    • Journal of the Korean Society of Combustion
    • /
    • v.22 no.2
    • /
    • pp.9-18
    • /
    • 2017
  • In this study, we measured that fire characteristics of four wood species using indoor finish materials. Wooden specimens were treated with fire retardant chemicals such as diammonium phosphate and potassium carbonate. The wooden specimens are Larix kaempferi, Pinus koraiensis, Cryptomeria japonica, and Chamaecyparis obtusa, which are used for indoor finish. The heat release rate (HRR) values of fire retardant treated woods were confirmed lower than that of untreated woods. For specific details, the HRR values of vacuum impregnated specimens for Pinus koraiensis and Cryptomeria japonica were measured lower than coatings. However, those of Larix kaempferi and Chamaecyparis obtusa showed the opposite effect to it. Total heat release rate values of all wooden specimens, vacuum impregnated were lower than coated specimens.

Combustion Characteristics of a Small Diesel Engine Converted to Spark Ignition Operation and Fuelled with Natural Gas (디젤 기관을 개조한 소형 전기점화식 천연가스기관의 연소 특성 연구)

  • Park, S.;.Thomas, D. G.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.6
    • /
    • pp.65-77
    • /
    • 1996
  • A small-sized industrial diesel engine was converted to a spark ignited engine and then adapted for fuelling with natural gas. After conversion work, general combustion characteristics of the gas engine(such as ignition delay, main and total combustion durations, and heat release characteristics) were studied as a functio of major engine operating variables such as air to fuel ratio, spark timing, and spark plug type. Some other studies on cyclic variation characteristics in IMEP, Pmax and (dp/dφ)max, and also optimum combustion phasing angle were performed.

  • PDF

The Dependency of CH* Chemiluminescence of a Laminar Premixed Flame on Fuel Types (연료에 따른 층류 예혼합화염의 CH* Chemiluminescence 신호특성 변화)

  • Lee, Won-Nam;Kang, Suk-Min
    • Journal of the Korean Society of Combustion
    • /
    • v.13 no.2
    • /
    • pp.14-22
    • /
    • 2008
  • The CH* chemiluminescence of premixed flames and their dependency on fuel types has been experimentally investigated on laminar methane and propane premixed flames. The measured chemiluminescence intensities are observed linearly proportional to the fuel flow rate, which could be interpreted as the CH* chemiluminescence signal is linearly proportional to the heat release rate under fuel lean conditions. The effect of equivalence ratio could be expressed by an exponential function as ${I_{CH*}}^{\propto}\;a_1\;{\exp}(b_1{\Phi})$, where $a_1\;=\;0.00054$ and $b_1\;=\;4.60$ for methane and $a_1\;=\;0.0056$ and $b_1\;=\;5.02$ for propane. Oscillating flames showed the temporal fluctuation of chemiluminescence intensity: however, the time averaged values are virtually identical to those of quiescent flames under the same fuel flow rate and equivalence ratio conditions. This observation suggests that there is no significant flame stretch effect on chemiluminescence intensity, in average values.

  • PDF