• Title/Summary/Keyword: heat pump

Search Result 1,591, Processing Time 0.027 seconds

A Evaluation on the Field Application of High Strength Concrete for CFT Column (고강도 CFT용 콘크리트의 현장적용성 평가 및 장기거동 예측)

  • Park, Je Young;Chung, Kyung Soo;Kim, Woo Jae;Lee, Jong In;Kim, Yong Min
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.6
    • /
    • pp.707-714
    • /
    • 2014
  • CFT (Concrete-Filled Tube) is a type of steel column comprised of steel tube and concrete. Steel tube holds concrete and the concrete inside tube takes charge of compressive load. This study presents structural performance of the CFT column which has 73~100 MPa high strength concrete inside. Fluidity, mechanical compression, pump pressure test in flexible pipe were conducted for understanding properties of the high strength concrete. Material properties were achieved by various experimental tests, such as slump, slump flow, air content, U-box, O-Lot, L-flow. In addition, mock-up tests were conducted to monitor concrete filling, hydration heat, compressive strength. From construction sites in Sang-am dong and University of Seo-kang, long-term behaviors could be effectively predicted in terms of ACI 209 material model considering elastic deformation, shrinkage and creep.

Design and Construction of the Burj Dubai Concrete Building Project (버즈 두바이 콘크리트 건물의 설계와 시공)

  • Abdelrazaq, Ahmad
    • Magazine of the Korea Concrete Institute
    • /
    • v.20 no.6
    • /
    • pp.28-35
    • /
    • 2008
  • The Burj Dubai Project will be the tallest structure ever built by man; when completed the tower will be more than 700 meter tall and more than 160 floors. While the early integration of aerodynamic shaping and wind engineering considerations played a major role in the architectural massing and design of this multi-use/residential tower, where mitigating and taming the dynamic wind effects was one of the most important design criteria, the material selection for the structural systems of the tower was also a major consideration and required detailed evaluation of the material technologies and skilled labor available in the market at the time Concrete was selected for its strength, stiffness, damping, redundancy, moldability, free fireproofing, speed of construction, and cost effectiveness. In addition, the design challenges of using concrete for the design of the structural system components will be addressed. The focus on this paper will also be on the early planning of the concrete works of the Burj Dubai Project.

The Effect of Construction Methods on Geothermal Exchange Rates of Cast-in-place Energy Piles (현장타설말뚝형 에너지 파일의 시공형태별 지중 열교환량에 관한 연구)

  • Park, Yong-Boo;Nam, Yu-Jin;Sim, Young-Jong;Sohn, Jeong-Rak
    • Land and Housing Review
    • /
    • v.3 no.2
    • /
    • pp.169-175
    • /
    • 2012
  • In recent, there are many studies associated with energy piles to save initial construction cost for ground source heat pump system. In this study, to evaluate geothermal exchange rates two types (a connection type and a slinky type) of cast-in-place energy piles (PRD, 4.5m in depth, 1,200 mm in diameter) were constructed for the tests and their efficiencies were compared with numerical analysis results. As a result, starting with operation, geothermal exchange rate gradually decreases due to exchange of lower ground temperature. In the case of connection type, temperature difference is $0.37^{\circ}C$ in heating mode and $0.34^{\circ}C$, in cooling mode, respectively. In addition, in case of a connection type, geothermal exchange rate in heating mode is 2,314W/m and in cooling mode, 252.2W/m whose value is 9% higher than in heating mode. In the case of slinky type, the average geothermal exchange rate in heating mode is 168.0W/m, which is about 27% lower than that of connection type.

Establishment of the Measurement System of the Magnetic Field for the Study on the Magnetic Field Tolerance of TMP

  • Baik, Kyungmin;Cheung, Wan-Sup;Lim, Jong-Yeon;Choi, Kyoung-Min;Nam, Seung-Hwan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.106.1-106.1
    • /
    • 2013
  • When strong static magnetic field is applied to the TMP, it is expected that the presence of the magnetic field might retard the velocity of the blades which results in the change of the pumping speed of the TMP. However, such effect of the magnetic field on the TMP has not been well characterized. Thus, under the strong magnetic field, monitoring pumping speed as well as generated heat, pressure, and vibration of the TMP may be an important issue to understand the magnetic field tolerance of the TMP and the development of magnetic shielding technique for the key components of the pump. For this purpose, magnetic field generation system to the vertical direction by a circular current source was firstly designed and suggested [K. Baik et al., 44th Annual Conf. KVS, 22(1), 153, (2012)]. In the current study, another magnetic field generation systems are presented to apply the magnetic field to the horizontal and radial directions by the rectangular current sources and the permanent magnets respectively. Such systems were made to generate at least 50 Gauss of magnetic field along the vertical direction and at least 25 Gauss of magnetic field along the horizontal or radial direction. Current study introduces the evaluation system of the magnetic field along the vertical, horizontal, and radial directions and presents the measured experimental results of the magnetic field when such systems are combined with the equipment where TMP will be installed.

  • PDF

Analysis of Comfortable Environment in the Classroom with Humidification and Ventilation in Winter (겨울철 가습 및 환기에 따른 교실내 쾌적환경 분석)

  • Cheong, Seong-Ir;Sheng, Nai-Li;Kim, Doo-Hyun;Lee, Jae-Keun;Hwang, Yu-Jin;Park, Jong-Hoon;Seo, Seok-Jang
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.7
    • /
    • pp.402-408
    • /
    • 2009
  • In this paper, the effects of ventilation and humidification on thermal comfort and indoor air quality(IAQ) were evaluated in a classroom when a heat pump system was operated in winter. Thermal comfort parameters, such as temperature, relative humidity, globe temperature and air velocity, were measured at 9 points in the classroom. The concentration of $CO_2$ and total suspended particles(TSP) in the classroom were measured in order to analyze IAQ. Temperature distribution in the classroom was decreased by $2{\sim}5^{\circ}C$ when the ventilation system and the humidifier were operated. When the relative humidity was adjusted to 60% by operating the humidifier and the ventilation system, the predicted mean vote(PMV) in the classroom was within the comfortable range of $-0.5{\sim}0.5$. When the ventilation system was operated, the average concentration of $CO_2$ and TSP were decreased by 645 ppm and 0.17 $mg/m^3$, respectively. This paper suggests the humidification and ventilation conditions to maintain the comfortable environment in the school classroom in winter experimentally.

Economic Evaluation of Glass Greenhouse Heating Solar Thermal System Applied with Seasonal Borehole Thermal Energy Storage System (BTES 방식의 계간축열 시스템을 적용한 유리온실의 난방용 태양열시스템의 경제성 평가)

  • Park, Sang-Mi;Seo, Tae-Beom
    • Journal of the Korean Solar Energy Society
    • /
    • v.38 no.5
    • /
    • pp.63-74
    • /
    • 2018
  • The heating performance of a solar thermal seasonal storage system applied to a 1,320 m2 glass greenhouse was analyzed numerically, and the economic feasibility depending upon the number of boreholes was evaluated. For this study, the gardening 16th and 19th zucchini greenhouse of Jeollanam-do agricultural research & extension services was selected. And the heating load of the glass greenhouse selected was 1,147 GJ. BTES(Borehole Thermal Energy Storage) was considered as a seasonal storage, which is relatively economical. The number of boreholes was selected from 25 to 150. The TRNSYS was used to predict and analyze the dynamic performance of the solar thermal system. Numerical simulation was performed by modelling the solar thermal seasonal storage system consisting of flat plate solar collector, BTES system, short-term storage tank, boiler, heat exchanger, pump and controller. As a result of the analysis, when the number of boreholes was from 25 to 50, the thermal efficiency of BTES system and the solar fraction was the highest. When the number of boreholes was from 25 to 50, it was analyzed that the payback period was from 5.2 years to 6.2 years. Therefore it was judged to be the number of boreholes of the proposed system was from 25 to 50, which is the most efficient and economical.

Optimal Design of RSOFC System Coupled with Waste Steam Using Ejector for Fuel Recirculation (연료 재순환 이젝터를 이용한 연료전지-폐기물 기반 가역 고체 산화물 연료전지의 최적 설계)

  • GIAP, VAN-TIEN;LEE, YOUNG DUK;KIM, YOUNG SANG;QUACH, THAI QUYEN;AHN, KOOK YOUNG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.4
    • /
    • pp.303-311
    • /
    • 2019
  • Reversible solid oxide fuel cell (RSOFC) has become a prospective device for energy storage and hydrogen production. Many studies have been conducted around the world focusing on system efficiency improvement and realization. The system should have not only high efficiency but also a certain level of simplicity for stable operation. External waste steam utilization was proved to remarkably increase the efficiency at solid oxide electrolysis system. In this study, RSOFC system coupled with waste steam was proposed and optimized in term of simplicity and efficiency. Ejector for fuel recirculation is selected due to its simple design and high stability. Three system configurations using ejector for fuel recirculation were investigated for performance of design condition. In parametric study, the system efficiencies at different current density were analyzed. The system configurations were simulated using validated lumped model in EBSILON(R) program. The system components, balance of plants, were designed to work in both electrolysis and fuel cell modes, and their off-design characteristics were taken into account. The base case calculation shows that, the system with suction pump results in slightly lower efficiency but stack can be operated more stable with same inlet pressure of fuel and air electrode.

Evaluation of Filling Performance of Steel Concrete Panel (SCP) Mock-up Member with Low-binder based High-fluidity Concrete (저분체 기반 고유동 콘크리트의 Steel Concrete Panel Mock-up 부재 충전 성능 평가)

  • Park, Gi Joon;Park, Jung Jun;Kim, Sung Wook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.4
    • /
    • pp.477-483
    • /
    • 2019
  • Recently, precast type SCP modules are being used instead of PSC structures in order to reduce the construction period and costs of special structures such as nuclear power plants and LNG storage tanks. The inside of the SCP module is connected with a stud for the integral behavior of the steel and concrete, and the use of high fluidity concrete is required. High fluidity concrete generally has a high content of binder, which leads to an increase in hydration heat and shrinkage, and a problem of non-uniform strength development. Therefore, in this study, fluidity and passing performance of high fluidity concrete according to material properties are investigated to select optimum mix design of low binder based high fluidity concrete. Mechanical properties of high fluidity concrete before and after pumping are examined using pump car. The filling performance of SCP mock-up members was evaluated by using high fluidity concrete finally.

The Energy Consumption Analysis for the Eco-friendly Design Application Factors of a Broadcasting Building (방송사 건물의 친환경 설계 적용 요소에 대한 에너지 소비 분석 연구)

  • Kim, Bae-Young;Yoon, Hea-Kyung
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.34 no.2
    • /
    • pp.41-48
    • /
    • 2018
  • This study is expected to provide some basic data on how to apply more economical and efficient eco-friendly factors to reduce the carbon emissions. It has been scrutinized and analyzed the environmental factors of passive eco-friendly elements along with active eco-friendly elements as more efficient factors for energy conservation based on the case of a newly constructed broadcasting building with the green building certification in Sangam-dong DMC area. The first analysis was the energy consumption trends in Korea and the necessity of energy saving. Secondly, it was examined the energy consumption in the current status of the broadcasting building. Thirdly, it was looked into the correlation between the eco-friendly design application factors applied to the broadcasting building and the energy consumption types. As a result of the analysis, the application of fan and feed pump inverter along with ventilation system of waste heat recovery ventilation system were more meaningful in accordance with the economic feasibility of broadcasting buildings rather than economical effect of passive elements such as rooftop garden, reinforcement of building insulation. Also, the application of lighting control had the economical feasibility. Therefore, when it is intended to change the green building certification energy related evaluation items of the similar broadcasting building types, it is necessary to change the direction of adding weight to the more economical active element items in the future.

Temperature Variation of Exhaust Gas in Diesel Generator for Low Pressure SCR (저압 SCR을 위한 디젤발전기 배기가스 온도 변화)

  • Hong, Chul Hyun;Lee, Chang Min;Lee, Sang Duk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.2
    • /
    • pp.355-362
    • /
    • 2021
  • To facilitate low-pressure selective catalyst reduction (L.P SCR), a high exhaust-gas temperature of a four-stroke diesel engine for a ship's generator is required. This study aimed at reducing the exhaust-gas temperature by adjusting the valve open-close timing and fuel injection timing to satisfy the operating conditions of L.P SCR and prevent accidents associated with the generator engine due to high temperature. To lower exhaust-gas temperature, the angle of the camshaft was adjusted and the shim of the fuel injection pump was added. As a result, the maximum explosion pressure increased and the average of the turbocharger outlet temperature dropped. Considering the heat loss from the turbocharger outlet to the SCR inlet, the operation condition for L.P SCR was satisfied with 290 ℃. The study demonstrates that safe operation of a diesel generator can be achieved by lowering the exhaust-gas temperature.