• Title/Summary/Keyword: heat of hydration heat

Search Result 712, Processing Time 0.029 seconds

Thermal Stress Analysis on the Heat of Hydration Considering Creep and Shrinkage Effects of Mass Concrete (크리이프와 건조수축영향을 고려한 매스콘크리트에서 수화열에 대한 온도응력해석)

  • 김진근;김국한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1992.04a
    • /
    • pp.107-113
    • /
    • 1992
  • The heat of hydration of cement the causes the internal temperature rise at early age, particulary in massive concrete structures such as a mat-slab of nuclear reactor building or a dam or a large footing. As the result of the temperature rise and restraint of foundation, the thermal stress enough to induce concrete cracks can occur. Therefore, the prediction of the thermal stress is very important in the design and construction stages in order to control the cracks developed in massive concrete structures. And, more creep and shrinkage take place at elevated temperatures in young concrete, Thus the effect of creep and shrinkage must be considered for checking the safety and servicebility(crack, durability and leakage).

  • PDF

An Application of the Mass Concrete Using Ternary Blended Cement (3성분계 시멘트를 사용한 매스콘크리트의 시공사례)

  • 권영호;하재담;전성근;김무한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.1229-1234
    • /
    • 2001
  • The bottom slab of Inchon LNG in-ground #213 tank is designed as a massive structure witch has a large depth and section. The purpose of this study is to determine the optimum mix design having good workability and low hydration heat for bottom slab concrete and to control the actual concrete quality in site. For this purpose, we select the optimum mix design used ternary blended cement(furnace slag cement+fly ash) and design factors. As test results of actual application, we have finish placing the bottom slab concrete of 23,180㎥ during 68hours with good success and obtain the good quality of fresh and hardened concrete including slump, air contents, no-segregation, compressive strength and low hydration heat in actual data. All test results are satisfied with our specifications for bottom slab concrete and we cut costs as the use of ternary blended cement and the reduction of placing hours.

  • PDF

The Practical Application of High Strength Concrete to Major Structural Elements in consideration of Heat of Hydration (고강도 콘크리트의 주요구조부재에 대한 현장타설 및 수화온도 측정)

  • 윤영수;이승훈;성상래;백승준;신성우;장일영
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.04a
    • /
    • pp.195-200
    • /
    • 1995
  • This paper presents the practical use of high strength concrete on 28-story Samsung Shin-dacbang Housing-Commercial Combined Building with 8-story basements located in Seoul. 700 Kg/$\textrm{cm}^2$ compressive Strength concrete was placed for basement core-walls and 500 kg/$\textrm{cm}^2$ concrete was used for structural frames up to 10th floor. The thermal sensors were installed prior to concrete casting into the core walls to measure the heat of hydration during hardening process. The correlation of core strength to the standard cylinder test strength was also discussed. The successful utilization of 500 and 700 kg/$\textrm{cm}^2$ concrete shows that the practical application of high strength concrete has a great potential to the high-rise R.C building construction.

  • PDF

The Quality Control of Mass Concrete mixed with Fly-Asy (플라이애쉬를 혼합한 매스콘크리트의 품질관리)

  • 박칠림;권영호;이상수;김동석;박상준
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10b
    • /
    • pp.940-945
    • /
    • 1998
  • Recently, serious cracking problems have been reported in this country while the process of actual massive concrete construction. he hydration heat arising from the chemical reaction of cement with water causes temperature differentials in between inside and outside of a structural member, and these temperature differentials induce thermal stresses. In this paper, we described on the practical application and quality control of the mass concrete mixed with fly-ash. This project is investigating adiabatic temperature rise test of concrete, mock-up test in the laboratory, ad B/P before placing the mass concrete in site. As a result, we can be prevent temperature cracking from the cement hydration heat of mass concrete and also can be showed up secure quality control flow chart of mass concrete.

  • PDF

Mechanical Properties of Cement Paste according to the amount of Red mud Neutralized with Sulfuric Acid (황산 중화 레드머드 첨가량에 따른 시멘트 페이스트의 역학적 특성)

  • In, Byung-Eun;Kim, Sang-Jin;Kang, Suk-Pyo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.21-22
    • /
    • 2022
  • In order to improve the strength degradation of the cement-based material to which strong alkaline liquid red mud was added, the liquid red mud was neutralized with sulfuric acid and added to the cement paste to examine the mechanical properties according to the amount added. As a result of measuring the compressive strength, the strength was higher when the red mud was neutralized with sulfuric acid and added to the cement paste than the cement paste to which the liquid red mud was added. As a result of hydration heat measurement, when red mud was neutralized with sulfuric acid and added to the cement paste, an initial strength higher than that of liquid red mud was expressed.

  • PDF

A Field Application of the Self-Compaction Concrete for Shrinkage Compensation (수축보상을 위한 자기충전 콘크리트의 현장적용)

  • Lee, Sang-Soo;Won, Cheol;Park, Sang-Joon;Kim, Dong-Seok
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2002.05a
    • /
    • pp.7-12
    • /
    • 2002
  • The purpose of this study is to design and to apply the self-compaction concrete mixture to field, having not only high strength but also compensation for shrinkage without thermal crack under 4 sides outer restraint of the member. In the experimental mix, replacement ratio of limestone Powder, CSA expansive additives, and unit water were selected as parameters, using portland blast-furnace slag cement. And, bleeding test, expansibility test, hydration heat analysis were performed. As a results, when Cement is replaced with 35% limestone Powder, 6% CSA expansive additives at unit water 175kg/$m^3$, demanded performances of fresh and hardened self-compaction concrete are accomplished in the field application.

  • PDF

The Application of Hydration Heat to Form Removal of Lining Concrete in Tunnel (수화열을 고려한 터널 라이닝 콘크리트 거푸집 탈형)

  • Lee, Jong-Kil;Jung, Hyung-Mok;Kim, Kook-Han;Namgoong, Yeong-Hwan;Park, Chan-Kyu
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.347-350
    • /
    • 2005
  • The strength level for removal of lining concrete in tunnel is increased from 2.94MPa to 4.9MPa in 2004. This result in the increase of concrete curing time, and construction time would be delayed. In this study, in order to improve the efficiency of construction cycle and satisfy the strength criterion, a curing method is adopted, which is considering the hydration heat in the lining concrete member. As a result, it is shown that the concrete curing time for form removal is about 20hrs without the adjustment of concrete mix design. And construction cycle time is not changed compared to that before the change of strength criterion.

  • PDF

Parametric Studies on the Temperature and Thermal Stresses According to Construction Condition of RC Box Structures (철근콘크리트 박스구조물의 시공변수에 따른 수화온도 및 열응력 특성 비교 연구)

  • 오병환;최성철;이명섭;박해균;주태성;안경철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.47-52
    • /
    • 2002
  • Recently, the underground reinforced concrete(RC) box structures have been increasingly built in Korea. In such structures, the heat of hydration may cause serious cracking problems. The RC box structures are classified in this category that needs much attention to control the hydration heat during construction. The purpose of the present study is to analyse the parameters which are related to the thermal crackings of the box structures. In this study, the quantitative studies of thermal stresses according to construction conditions in the RC box structures are thoroughly analysed. Major influencing variables are studied through the finite element analysis which affect the thermal cracking of RC box structures.

  • PDF

An experimental study on quality change of concrete according to fly ash using (플라이애쉬 사용에 따른 콘크리트 품질변화에 관한 실험적 연구)

  • Park, Il-Yong;Paik, Min-Su;Shon, Jong-Kyu;Choi, Soo;Jung, Sang-Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.147-152
    • /
    • 1999
  • The purpose of this study is to offer foundmental information of fly ash concrete for field application. Through before study of fly ash concrete, various properties were checked. but when fly ash was added In concrete, entrained air quantity was decreased as fly ash substitution is increased in fresh concrete. so entrained air(below AE) quantity and a kind of AE according to fly ash substitution was tested basic properties. Also water-reducing efficiency was tested. And hydration heat according to fly ash substitution was tested by KR-100. As result of test, according to fly ash substitution increase, entrained air quantity is increase for target entrained air quantity, water-reducing efficiency and hydration heat are positive.

  • PDF

Construction Example of the Hydration Heat Control for Foundation of Yang Pyeong Bridge with Pipe Cooling (파이프쿨링을 적용한 양평대교 직접기초의 수화열 제어대책에 관한 시공사례)

  • Kyung, Je-Woon;Park, Jin-Tea;Lee, Myung-Sung;Oh, Se-Ho;Lee, Yong-Hak
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.441-444
    • /
    • 2006
  • The Yang Pyeong bridge is high the occurred possibility of temperature crack by means of hydration Heat when the foundation of is constructed. Therefore, a pipe-cooling method was applied for reducing the temperature crack. Using the measured temperature curve when construction was carried out, the measured value and different facts were analyzed. In this paper, cause and analysis with respect to a mentioned above is to discuss firstly, and thermal characteristics of concrete and construction method hereafter is also discussed.

  • PDF