• Title/Summary/Keyword: heat of formation

Search Result 1,700, Processing Time 0.028 seconds

Heat and Mass Transfer of Parallel Plate Heat Exchanger under Frosting Condition (착상조건하에서 평행 평판 열교환기의 열 및 물질전달)

  • Lee, K.S.;Lee, T.H.;Kim, W.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.6 no.2
    • /
    • pp.155-165
    • /
    • 1994
  • In this study, the following factors are investigated from experiments for a vertical parallel plate heat exchanger under the frosting condition ; the growth of frost layer, the characteristics of heat and mass transfer, the change of mass flow rate of the air passing through the heat exchanger, and the pressure drop of the air in the heat exchanger. The amount of heat and mass flux of water vapor transferred from the air stream to the heat exchanger surface is large at the early stage of frosting and then decreases dramatically, and the extent of decreasing rate becomes moderate with time. The frost layer formed near the inlet of the heat exchanger is thicker and denser than that formed near the outlet. It is found that the gradient of the amount of frost along the flow direction increases with time. In the early period of frost formation, the thermal resistance between the air and the cooling plate increases dramatically and then the extent of change decreases with time. Initially the convective thermal resistance is dominant. Then, while the convective thermal resistance decreases with time, the conductive thermal resistance continues to increase with time and finally the conductive thermal resistance becomes dominant.

  • PDF

Effect of supercooling and cooling rate on a continuous ice slurry formation using a plate heat exchanger (판형 열교환기에서 유동 과냉도 및 냉각속도가 연속제빙에 미치는 영향)

  • Lee, Dong-Gyu;Peck, Jong-Hyun;Hong, Hi-Ki;Kang, Chae-Dong
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.138-143
    • /
    • 2006
  • The peculiarity of ice slurry, such as liquidity, high heat transfer rate and easy storage can also find to supercooled type dynamic ice storage system(DISS) which is one of the DISS. However, in order to accomplish continuous ice formation in the system without mechanical moving parts, supercooled aqueous solutionshould be formed stable through cooling heat exchanger and be dissoluted in storage tank. In previous research, the time of ice slurry increased as the pressure of the cooling heat exchanger(PHX) increased. In this study, a cooling experiment of an ethylene glycol 7mass% solution was performed with various inlet temperature of the PHX, which has constant brine inlet temperature of $-7^{\circ}C$. The temperature in the storage tank maintained to freezing point of the solution. At results, the time of ice slurry formation increased as the supercooling degree decreased and the cooling rate increased.

  • PDF

A Study of Frost Formation and Heat Transfer on a Cylinder in a Cross-Flow (주유동중에 놓인 원관 외부에서의 발생하는 착상 및 열전달에 관한 연구)

  • Lee, D.G.;Choi, M.;Ro, S.T.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.8 no.4
    • /
    • pp.537-549
    • /
    • 1996
  • A numerical study of heat and mass transfer has been carried out for a frost formation process on a circular cylinder in a cross flow including the effect of buoyancy. Studies include cases of low and high Reynolds number flows. The effect of normal velocity at the surface which is produced due to mass transfer was included in the analysis as well as heat transfer contribution generated due to mass transfer. Variations of heat transfer and frost growth both in time and in the circumferential direction have been obtained for various buoyancy parameters. The effect of flow directions(identical or opposite directions to the gravity) has been studied to yield different frost growth. Our results have been compared with existing experimental data and are in good agreement. Buoyancy analyses for a high Reynolds number flow agree with full numerical solutions for the case of having the same flow direction as gravity. However, for the opposite direction case, the boundary layer analyses would not be applicable to predict frost growth except the region near the stagnation point.

  • PDF

A Study on the Phase Formation Process in Bi-system Superconductor with Heat Treatment Conditions (열처리 조건에 따른 Bi계 초전도체에서 상 생성 과정에 대한 연구)

  • 정진인;이준웅;박용필
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.221-223
    • /
    • 1999
  • In this work, samples were manufactured variously by changing conventional calcining and sintering conditions and we tried the utilization by making the heat treatment time, which is demanded to high-Tc phase formation, much shorter. We found out optimal heat treatment conditions with the analysis on formation process at superconducting phase in term of the change of calcining and sintering time and then, examined X-ray diffraction(XRD) patterns, scanning electron microscope(SEM) measurement and energy dispersive X-ray spectrometer(EDX) of the samples manufactured under heat treatment conditions which we suggest here. As a result, 2223 high-$T_c$, phase of (Bi,Pb)SrCaCuO superconductor starting with ($Bi_l$ xPbx,)$_2$$Sr_2$$Ca_2$$Cu_3$$O_y$, composition was formed from 1 hr sintering sample at temperature nearby melting point and also the completed sample with calcining and sintering time of 9 hr was formed high-$T_c$.low-$T_c$ phase appearing in sight above the critical temperature of liquid $N_2$.

  • PDF

Improved Correlation Between Theoretical and Experimental Determination of Heat of Formation of Some Aliphatic Nitro Compounds

  • Pablo Duchowicz;Eduardo A. Castro;Pei-Chung Chen
    • Journal of the Korean Chemical Society
    • /
    • v.47 no.2
    • /
    • pp.89-95
    • /
    • 2003
  • We present improved correlations between theoretical and experimental determination of heat of formation of some aliphatic nitro compounds. The method is based on a previously given theoretical procedure, which is ameliorate through the introduction of suitable bond parameters. The comparison with available experimental data and previous theoretical estimation show a quite satisfactory improvement. Some possible further extensions are pointed out.

Ni-Al Based Intermetallics Coating Through SHS using the Heat of Molten Aluminum (알루미늄 주물 위 용탕열을 이용한 N-Al계 금속간화합물의 연소합성 코팅)

  • Lee, Han-Young;Cho, Yong-Jae
    • Journal of Korea Foundry Society
    • /
    • v.31 no.2
    • /
    • pp.83-86
    • /
    • 2011
  • Ni-Al based intermetallic compounds of self-propagating high-temperature synthesis (SHS) by the heat of molten aluminum and been coated on the aluminum casting alloy. The effects of the pouring temperature in casting and the thickness of casting substrate on SHS of the coating layer have been investigated. The experimental result showed that the reaction of the coating layer was activated with increasing the pouring temperature in casting and the thickness of casting substrate. However, the aluminum substrate was re-melted by the heat of formation for intermetallic compounds. Then, it was considered that some mechanical or thermal treatments for elemental powder mixtures were required to control the heat of formation for intermetallic compounds in advance.

A Study on the Formation of Cavity and Welding Property in the Laser Welding Fusion Zone between Sintered Segment and Mild Steel Shank (소결체와 저탄소강의 레이저용접시 생성되는 캐비티의 형성과 용접 특성에 대한 연구)

  • Cho Nam-Joon;Jung Woo-Gwang;Kim Sung-Wook;Lee Chang-Hee;Kim Sung-Dea
    • Korean Journal of Materials Research
    • /
    • v.14 no.4
    • /
    • pp.300-306
    • /
    • 2004
  • A laser welding has been made between sintered tip of Fe-Co-W and low carbon steel shank for the diamond saw blade. The welding characteristics and formation of defect has been investigated carefully for the weld fusion zone in different welding condition. Full penetration has been observed for the whole range of heat input investigated in the present work. Bead width and under-fill have been increased with the increase of heat input. With increasing of heat input small cavities were decreased while large cavities were increased. The ratio of total cavity area to the entire weld bead area was not changed significantly with change of heat input. Most of cavities were found near the tip, and supposed to be formed from the pore in the tip.

Effect of Heat Treatment Method on Properties of ZnO Thin Films Deposited by RF Magnetron Sputtering

  • Kim, Deok Kyu
    • Applied Science and Convergence Technology
    • /
    • v.26 no.2
    • /
    • pp.30-33
    • /
    • 2017
  • ZnO thin films which were deposited by RF magnetron sputtering system were annealed by furnace and insitu heat treatment methods. We investigated the effect of heat treatment method on physical properties of ZnO thin films. The structural and optical properties of ZnO thin films were improved by heat treatment. Through the annealing treatment of ZnO film by furnace, the good crystallinity and ultraviolet emission were obtained. These results are attributed to the improved formation of Zn-O bond in ZnO thin film annealed at by furnace. We confirm that the formation of Zn-O bond plays an important role in obtaining the excellent structural and optical properties of ZnO thin films.

Numerical Analysis for Stefan Problem in Mold-Casting with Air-Gap Resistance (주형/주물 접촉면에서의 접촉열저항을 고려한 상변화문제에 관한 연구)

  • 여문수;손병진;이관수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.2
    • /
    • pp.348-355
    • /
    • 1992
  • Casting structures and properties are determined by the solidification speed in the metal mold. The heat transfer characteristics of the interface between the mold and the casting is one of the major factors that control the solidification speed. According to Sully's research, the thermal resistance exists due to the air-gap formation at the mold-casting interface during the freezing process and the interface heat transfer coefficient is used to describe the degree of it. In this study, one-dimensional Stefan problem with air-gap resistance in the cylindrical geometry is considered and heat transfer characteristics is numerically examined. The temperature distribution and solidification speed are obtained by using the modified variable time step method. And the effects of the major parameters such as mold geometry, thermal conductivity, heat transfer coefficient and initial temperature of casting on the thermal characteristics are investigated.