• Title/Summary/Keyword: heat exchanger design

Search Result 681, Processing Time 0.025 seconds

Performance Analysis of R-1270(Propylene) Refrigeration System Using Internal Heat Exchanger (내부 열교환기를 이용한 R-1270용 냉동시스템의 성능 분석)

  • Ku, Hak-Keun
    • Journal of Power System Engineering
    • /
    • v.18 no.4
    • /
    • pp.36-42
    • /
    • 2014
  • This paper considers the influence of internal heat exchangers on the efficiency of a refrigerating system using R-1270. These internal heat exchangers(liquid-gas or suction-line heat exchangers) can, in some cases, yield improved system performance while in other cases they degrade system performance. A steady state mathematical model is used to analysis the performance characteristics of refrigeration system with internal heat exchanger. The influence of operating conditions, such as the mass flowrate of R-1270, inner diameter tube and length of internal heat exchanger, to optimal dimensions of the heat exchanger is also analyzed. The main results were summarized as follows : the mass flowrate of R-1270, inner diameter tube and length of internal heat exchanger, and effectiveness have the influences on the cooling capacity, compressor work and RCI(Relative Capacity Index) of this system. With a thorough grasp of it is possible to design the R-1270 compression refrigeration cycle using internal heat exchanger.

A Study on Performance Characteristics of Heat Exchanger for Heat Pump with R410A Refrigerant (R410A 냉매를 사용한 열펌프용 열교환기의 형상에 따른 성능특성 연구)

  • 정규하;박윤철;오상경
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.4
    • /
    • pp.340-348
    • /
    • 2004
  • The air and refrigerant side heat transfer performances are key parameters to improve heat transfer efficiency of the heat exchanger including the fan performance. Design of the fins, treatment of the tube inside, tube diameter and tube array effect heat transfer performance of the heat exchanger. The heat exchanger is used as a condenser at cooling mode and used as an evaporator at heating mode in the heat pump system. The heat pump system uses R410A as the refrigerant. The heat exchangers are consisted with 7 mm diameter tubes with slit-type fins. The study was conducted with variation of arrangement of the refrigerant path and air flow rate and refrigerant pressure drop and heat transfer rate were measured with a code tester. The capacity of the 3 path heat exchanger is more efficient than 2 or 4 path heat exchangers in heating or cooling modes.

An Experimental Study on Heat Transfer Enhancement of Cross Flow Heat Exchanger Using Screen (스크린을 이용한 직교류 열교환기의 열전달 촉진에 관한 연구)

  • Yoo, Seong-Yeon;Jang, Kwang-Il;Kwon, Hwa-Kil
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.185-190
    • /
    • 2007
  • For the successful design of heat exchangers, it is very important to understand local heat transfer characteristics on the circular cylinder of the cross flow heat exchangers. In this study, the heat exchanger using screen is developed to enhance heat transfer. The naphthalene sublimation technique is employed to measure the local heat transfer coefficients in the heat exchanger. The experiments are performed for single circular tube, in-line array tube bank with and without heat transfer promoter. Local Nusselt numbers of single circular tube and tube bank with heat transfer promoter are investigated and compared to those of without heat transfer promoter.

  • PDF

Evaluation on Thermal Energy Performance of a Plate Heat Exchanger (판형열교환기의 열에너지 성능평가)

  • Kang, Byung-Ha;Kim, Do-Kyu
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.14 no.1
    • /
    • pp.53-60
    • /
    • 2003
  • Performance evaluation on thermal transport of a plate heat exchanger has been carried out. The $\varepsilon$-Ntu method is employed to evaluate the performance of a brazed type of plate heat exchanger. This problem is of particular interest in the design of a plate heat exchanger. The characteristics of heat transfer as well as pressure drop are studied in the wide range of Reynolds numbers in the cold side while that of hot side is fixed at 620. f-factor correlation in a plate heat exchanger is obtained from the pressure drop data. It is also found that the effectiveness of the plate heat exchanger is increased as the Ntu is increased.

Development of Performance Test Apparatus and Design Program of Liquid-Phase Plate Heat Exchanger (액상 판형열교환기 성능실험장비 및 설계프로그램 개발)

  • Park, Sang-Il;Song, Young-Ho
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1306-1311
    • /
    • 2004
  • The performance test apparatus of liquid-phase plate heat exchanger was installed and the computer program for design was developed in this study. The detail temperature distribution of hot and cold fluids in each path of heat exchanger was calculated by numerical method and the correlation for the heat transfer coefficient was defined. The heat transfer coefficients were measured using the working fluids of water and glycerine to investigate the effect of fluid viscosity. The measured heat transfer coefficients were compared with the calculated values obtained from the computer program and it was shown that error of the calculated values was generally less than 5%.

  • PDF

Sensitivity Analysis on Design Factor of Ground Heat Exchanger for Optimum Design of Vertical Ground Source Heat Pump System (수직밀폐형 지중열교환기의 최적설계를 위한 설계인자 영향도 분석)

  • Bae, Sangmu;Kim, Hongkyo;Nam, Yujin
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.3
    • /
    • pp.87-93
    • /
    • 2018
  • Ground source heat pump(GSHP) system is one of the high efficiency heat source systems which utilizes the constant geothermal energy of a underground water or soil. However, the design of conventional GSHP system in the domestic market is dependent on the experience of the designer and the installer, and it causes increase of initial installation cost or degradation of system performance. Therefore, it is necessary to develop a guideline and the optimal design method to maintain stable performance of the system and reduce installation cost. In this study, in order to optimize the GSHP system, design factors according to ground heat exchanger(GHX) type have been examine by simulation tool. Furthermore, the design factors and the correlation of a single U-tube and a double U-tube were analyzed quantitatively through sensitivity analysis. Results indicated that, the length of the ground heat exchanger was greatly influenced by grout thermal conductivity for single U-tube and pipe spacing for double U-tube.

A Numerical Study of Flow Distribution Effect on a Parallel Flpw Heat Exchanger

  • Jeong, Gil-Won;Lee, Gwan-Su;Cha, Dong-Jin
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.11
    • /
    • pp.1563-1571
    • /
    • 2001
  • The effect of flow distribution on thermal and flow performance of a parallel flow heat exchanger has been numerically investigated. The flow distribution has been altered by varying the geometrica l parameters that included the locations of the separators, and the inlet/outlet of the heat exchanger. Flow nonuniformities along paths of the heat exchanger, which were believed to be dominantly influential to the thermal performance, have been observed to eventually optimize the design of the heat exchanger. The optimization has been accomplished by minimizing the flow nonuniformity that served as an object function when the Newton's searching method was applied. It was found that the heat transfer of the optimized model increased approximately 7.6%, and the pressure drop decreased 4.7%, compared to those of the base model of the heat exchanger.

  • PDF

Design Characteristics Analysis for Very High Temperature Reactor Components (VHTR 초고온기기 설계특성 분석)

  • Kim, Yong Wan;Kim, Eung Seon
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.12 no.1
    • /
    • pp.85-92
    • /
    • 2016
  • The operating temperature of VHTR components is much higher than that of conventional PWR due to high core outlet temperature of VHTR. Material requirements and technical issues of VHTR reactor components which are mainly dominated by high temperature service condition were discussed. The codification effort for high temperature material and design methodology are explained. The design class for VHTR components are classified as class A or B according to the recent ASME high temperature reactor design code. A separation of thermal boundary and pressure boundary is used for VHTR components as an elevated design solution. Key design characteristics for reactor pressure vessel, control rod, reactor internals, graphite reflector, circulator and intermediate heat exchanger were analysed. Thermo-mechanical analysis of the process heat exchanger, which was manufactured for test, is presented as an analysis example.

Heat transfer performance of a helical heat exchanger depending on coil distance and flow guide for supercritical cryo-compressed hydrogen

  • Cha, Hojun;Choi, Youngjun;Kim, Seokho
    • Progress in Superconductivity and Cryogenics
    • /
    • v.24 no.3
    • /
    • pp.62-67
    • /
    • 2022
  • Liquid hydrogen (LH2) has a higher density than gaseous hydrogen, so it has high transport efficiency and can be stored at relatively low pressure. In order to use efficient bulk hydrogen in the industry, research for the LH2 supply system is needed. In the high-pressure hydrogen station based on LH2 currently being developed in Korea, a heat exchanger is used to heat up supercritical hydrogen at 700 bar and 60 K, which is pressurized by a cryogenic high-pressure pump, to gas hydrogen at 700 bar and 300 K. Accordingly, the heat exchanger used in the hydrogen station should consider the design of high-pressure tubes, miniaturization, and freezing prevention. A helical heat exchanger generates secondary flow due to the curvature characteristics of a curved tube and can be miniaturized compared to a straight one on the same heat transfer length. This paper evaluates the heat transfer performance through parametric study on the distance between coils, guide effect, and anti-icing design of helical heat exchanger. The helical heat exchanger has better heat transfer performance than the straight tube exchanger due to the influence of the secondary flow. When the distance between the coils is uniform, the heat transfer is enhanced. The guide between coils increases the heat transfer performance by increasing the heat transfer length of the shell side fluid. The freezing is observed around the inlet of distribution tube wall, and to solve this problem, an anti-icing structure and a modified operating condition are suggested.

A NEW ALGORITGMIC HEURISTICS FOR THE SYNTHESIS OF OPTIMAL HEAT EXCHANGER NETWORT

  • Cho, Y.S.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.819-824
    • /
    • 1989
  • This paper proposes a new method for the discovery and design of an optimal heat exchanger network. The method is based upon the concept of pinch, a problem reduction technique and the heuristics developed in this work. It generates subproblems in a logical way and solves the subproblems by the heuristics to synthesize an optimal network structure. It is thought that the heuristics can preserve the minimum utility consumption, the minimum number of heat exchanger units, and the minimum number of stream splittings needed for a given problem. The minimum heat exchanger area for the optimal network can then be obtained by adjusting the temperatures associate with the heat exchanger in the optimal network structure. The method is applied to the problems appeared in the literatures. The results show the reductions in the number of heat exchanger units for some problems.

  • PDF