• 제목/요약/키워드: heat engine

검색결과 1,173건 처리시간 0.024초

핀-튜브 형태의 스털링엔진 고온 열교환기 설계를 위한 수치해석 연구 (NUMERICAL ANALYSIS TO DESIGN THE FIN-TUBE TYPE HEAT EXCHANGER OF STIRLING ENGINE)

  • 강석훈;정대헌;김혁주
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2010년 춘계학술대회논문집
    • /
    • pp.163-166
    • /
    • 2010
  • Numerical analysis is conducted to design the high temperature heat exchanger of Stirling engine by using the commercial CFD solver FLUENT. The fin-tube type of heat exchanger numerical calculation is conducted by changing the shape, number and material of fin shape of working fluid channel, etc in three-dimensional combustion field. Adjusted one-way constant velocity is used as the representative velocity of oscillating flow. The optimum design of heat exchanger considering the heat trasfer capability is suggested by using the calculation results.

  • PDF

6기통 압축착화 기관의 단일 영역 열방출량 계산 (An One-zone Heat Release Analysis of a 6 Cylinder Compression-Ignition Engine)

  • 신범식;이석영;전광민
    • 한국자동차공학회논문집
    • /
    • 제4권1호
    • /
    • pp.147-154
    • /
    • 1996
  • An one-zone heat release analysis was studied for a 6 cylinder direct injetction compressionignition engine. The heat transfer constants in this anlysis were calibrated to match the measured fuel energy at 1,000 rpm full load, which was the fuel mass multiplied by the fuel's heating value. The integrated gross heat release values were close to the measured fuel energy at various full load operating conditions. The combustion inefficiency from this calculation was proportional to the smoke of exhaust gas.

  • PDF

Temperature transients of piston of a Camless S.I Engine using different combustion boundary condition treatments

  • Gill, KanwarJabar Singh;Singh, Khushpreet;Cho, H.M.;Chauhan, Bhupendra Singh
    • 에너지공학
    • /
    • 제23권3호
    • /
    • pp.221-230
    • /
    • 2014
  • Simplified finite element model of spark ignition (SI) engine to analyse combustion heat transfer is presented. The model was discredited with 3D thermal elements of global length 5 mm. The fuel type is petrol. Internal nodal temperature of cylinder body is defined as 21000C to represent occurrence of gasoline combustion. Material information and isotropic material properties are taken from published report. The heat transfer analysis is done for the instant of combustion. The model is validated by comparing the computed maximum temperature at the piston surface with the published result. The computed temperature gradient at the crucial parts are plotted and discussed. It has been found that the critical top surface suffered from thermal and the materials used to construct the engine parts strongly influenced the temperature distribution in the engine. The model is capable to analyze heat transfer in the engine reasonably and efficiently.

소형 DI 디젤 기관의 연소 모델링에 관한 연구 (A Study on the Modelling of Combustion in a Small DI Diesel Engine)

  • 고대권;김경현;장세호;안수길
    • 동력기계공학회지
    • /
    • 제2권2호
    • /
    • pp.20-26
    • /
    • 1998
  • Heat release data were obtained by analysis of cylinder diagrams from a test engine, naturally-aspirated small-size four-stroke DI diesel engine. These data were used to decide empirical coefficients of Whitehouse-Way's model, single zone combustion model. Finally, the comparison of calculated with experimental results was performed, and the accuracy of calculated versus experimental data of the model in predicting engine heat release and cylinder pressure was demonstrated.

  • PDF

가스터빈 결합, 분리실린더, 등적.등압.등온 혼합사이클 엔진성능의 변수 분석 (A Parametric Analysis of Performance of Gas Turbine Combined, Split Cylinder, Constant Volume, Pressure, Temperature, Mixed Cycle Engine)

  • 김동호;배종욱
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제28권7호
    • /
    • pp.1082-1091
    • /
    • 2004
  • Analyzed Parametrically was an internal combustion engine combined with gas turbine the cycle of which is splitted into compression side cylinder and expansion side one, and heat adding of which is during constant volume pressure, temperature process. The advantages of each measures were analyzed by means of thermal cycle diagram. The thermal efficiency of partial load cutting off firstly isothermal heat adding and secondly isobaric heat adding also was analyzed The authors suggested some potentials about the performance as for thermal efficiency, mean effective pressure and reducing emissions and noise supposed were the operating parameter of the engine set to some values and were some problems solved.

열원이 있는 밀폐된 선박 기관실에서의 난류기류에 관한 수치적 연구 (Numerical simulation of turbulent air-flow in a closed engine room with heat source in a ship)

  • 박찬수
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제22권1호
    • /
    • pp.100-107
    • /
    • 1998
  • Ventilation of the marine engine room is very important for the health of the workers as well as the nomal operation of machines. To find proper ventilation conditions of this engine room, numerical simulation with standard k-.epsilon. model was carried out. In the present study, the marine engine room is considered as a closed space with a heat source and forced ventilation ducts. The injection angle of air supply is found to be important. Injection with downword angle depresses recirculation flow, causing a strong steam in the wider space of the room. Ventilation and removal of the released heat are promoted with this pattern. There is a possibility of local extreme heating at the upper surface of engine when supply and exhaust ports of air are in bilateral symmetry. The effect of the increase of exhaust port area on ventilation decreases as the number of supply port increases.

  • PDF

경계요소법에 의한 터보과급 가솔린기관 실린더블럭의 열전도 해석 (Analysis of heat conduction of cylinder block of turbocharged gasoline engine by boundary element method)

  • 김은태;최영돈;홍진관
    • 오토저널
    • /
    • 제11권2호
    • /
    • pp.41-54
    • /
    • 1989
  • In this study, steady state heat conduction problems of the cylinder block of turbocharged gasoline engine were solved by the boundary element method. Surface of the cylinder block was divided by the triangular cells with constant potential. Temperature distribution, effective heat transfer coefficient of the cylinder block were investigated with variation of equivalence ratio, engine speed and boost pressure. The results show that maximum temperature of cylinder block increase rapidly with increasing engine speed and boost pressure. The monolithic structure of cylinder block results in sever inhomogeneity of inner wall temperature at the high engine speed and boost pressure.

  • PDF

단기통 4사이클 압축점화기관의 시뮬레이션에 의한 성능해석 (Performance of a Single-Cylinder 4-Stroke C.I. Engine Obtained from Cycle Simulation)

  • 이태원;유병철
    • 오토저널
    • /
    • 제7권3호
    • /
    • pp.74-82
    • /
    • 1985
  • Using single-zone heat release model and quasi-steady model, computer program for calculating the compression ignition engine cycle was composed. The properties in the cylinder were calculated in terms of crank angle and the effects of various operating conditions on rate of heat release and on engine performance were studied. The predicted values for the engine under consideration have shown good agreement with published data.

  • PDF

하이브리드 Tri-generation 가스엔진-유기랭킨사이클 시스템의 설계 및 열역학적 해석 (Design and Thermodynamic Analysis of Hybrid Tri-generation Gas Engine-Organic Rankine Cycle)

  • 성태홍;윤은구;김현동;최정환;채정민;조영아;김경천
    • 한국수소및신에너지학회논문집
    • /
    • 제26권1호
    • /
    • pp.79-87
    • /
    • 2015
  • In a gas engine, the exhaust and the engine cooling water are generated. The engine cooling water temperature is $100^{\circ}C$ and the exhaust temperature is $500^{\circ}C$. The amount of heat of engine cooling water is 43 kW and the amount of heat of exhaust is 21 kW. Eight different hybrid organic Rankine cycle (ORC) system configurations which considering different amount and temperature of waste heat are proposed for two gas engine tri-generation system and are thermodynamically analyzed. Simple system which concentrating two different waste heat on relatively low temperature engine cooling water shows highest thermal efficiency of 7.84% with pressure ratio of 3.67 and shaft power of 5.17 kW.

화학반응수치해석을 이용한 HCCI기관의 예혼합기의 성층화성이 연소시의 압력 상승률에 미치는 영향 (Numerical Analysis of Effect of Inhomogeneous Pre-mixture on Pressure Rise Rate in HCCI Engine by Using Multizone Chemical Kinetics)

  • 임옥택
    • 대한기계학회논문집B
    • /
    • 제34권5호
    • /
    • pp.449-456
    • /
    • 2010
  • HCCI 엔진은 고효율, 저공해를 실현할 수 있는 차세대 내연기관이다. 그러나 HCCI 엔진이 상용화되기 위해서는 몇 가지 문제점들이 해결되어야 한다. 그 중에서 가장 큰 문제점은 과도한 압력 상승률이 노킹을 발생시키기 때문에 운전영역이 제한되는 것이다. 이번 연구의 목적은 HCCI 엔진에서 압력상승률 저감을 위하여 온도 성층화와 농도 성층화 효과를 조사하는 것이다. 그리고 Multi-zone 모델을 이용한 화학반응 수치해석을 통하여 연소 및 배기가스 특성에 미치는 영향을 알아보았다. 수치해석에서 2 단계 열발생을 가지는 DME와 1단계 열발생을 가지는 메탄을 사용하였다.