• 제목/요약/키워드: heat engine

검색결과 1,173건 처리시간 0.026초

액체로켓엔진의 막냉각에 관한 실험적 연구(I) (Experimental Study of Film Cooling in Liquid Rocket Engine(I))

  • 최영환;정해승;김유;김선진
    • 한국항공우주학회지
    • /
    • 제33권6호
    • /
    • pp.71-75
    • /
    • 2005
  • 추진제로 LOX/kerosene를 사용하는 소형 액체로켓 엔진의 노즐에서 막냉각의 영향을 살펴보고자 물을 냉각제로 사용하여 로켓엔진의 노즐을 막냉각 시켰다. 막냉각제를 추력실로 흘려보내기 위한 막냉각장치를 제작하였으며, 막냉각제의 공급유량은 전체 추진제 공급 유량의 약 15~19% 하였다. 노즐의 열유속은 냉각제(물)의 온도상승과 유량을 측정하여 구하였다. 측정결과 노즐의 입구에서 막냉각제를 직접 분사시켰을 때, 노즐에서의 열유속은 크게 감소하였다.

칼로리미터를 적용한 액체로켓엔진의 열전달 특성 연구 (Study on Heat Transfer Characteristic of Liquid Rocket Engine with Calorimeter)

  • 남궁혁준;한풍규;김화중;김동환;이경훈;김영수;윤영빈;김동준;김성혁
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2005년도 제25회 추계학술대회논문집
    • /
    • pp.213-219
    • /
    • 2005
  • 액체로켓엔진의 성능 및 냉각특성 연구를 위한 칼로리미터를 적용한 소형연소기가 개발되어 시험이 수행되었으며 10개의 칼로리미터 채널에서 가스 측면 벽면을 따른 열전달계수를 예측하기 위해서 냉각 성능 해석이 수행되었다. 칼로리미터로 공급되는 유량에 대한 가스 측면의 열전달 특성과 냉각성능을 정량적으로 분석하고자 하였으며 연소시험 및 열전달 해석을 통해 열전달 경험식을 도출하였다.

  • PDF

내연기관 실린더 헤드 조립체 내부의 냉각수 유동 및 열전달에 관한 연구 (NUMERICAL STUDY ON THE COOLANT FLOW AND HEAT TRANSFER IN THE CYLINDER HEAD ASSEMBLY OF AN INTERNAL COMBUSTION ENGINE)

  • 서용권;허성규;김병휘
    • 한국전산유체공학회지
    • /
    • 제14권1호
    • /
    • pp.9-17
    • /
    • 2009
  • In this study we investigated the characteristics of fluid flow and heat transfer within a coolant passage in the cylinder head assembly of an internal combustion engine by using a commercial CFD code, CFX The complex coolant passage of the cylinder head assembly was modelled by suitable choice of a grid system and careful attention was paid in the construction of meshes near the walls where significant cooling occurs. To treat the simultaneous heating and cooling of the combustion walls we invented a methodology allowing a heat source within the solid wall and the convective cooling at the interface between the solid and the fluid. We managed to reproduce the experimental results by adjusting parameters appropriately. We have found that high temperature was concentrated at the surface of the cylinder jacket. It turned out that the effect of oil cooling from the piston head was unexpectedly significant. On the other hand the effect of cooling from the ambient air is almost negligible. The CFD method proposed in this study is believed to be useful in the early stage of the design of the engine-cooling system.

흡기밸브에서의 연료증발이 혼합기 형성에 미치는 영향 (The effect of fuel evaporation in the intake valve back on mixture preparation)

  • 박승현;이종화;유재석;신영기;박경석
    • 한국자동차공학회논문집
    • /
    • 제7권8호
    • /
    • pp.107-115
    • /
    • 1999
  • Hydrocarbon emission from spark ignition engines deeply relates with fuel evaporation mechanism. Therefore, fuel evaporation on the back of the intake valve is very important to understand fuel evaporation mechanism during engine warm up period. Intake valve heat transfer model was build up to estimate the amount of fuel evaporation on the intake valve back . Intake valve temperature was measured intake valve temperature is increased rapidly during few seconds right after engine start up and it takes an important role on fuel evaporation. The liquid fuel evaporation rate on the intake valve back proportionally increases as valve temperature increases, however its contribution slightly decreases as intake port wall temperature increases. The fuel evaporation rate on the valve back is about 40∼60% during engine warm-up period and it becomes about 20∼30% as intake port wall temperature increases. The estimation model also makes possible model also makes possible to review the effect of valve design parameters such as the valve mass and seat area on fuel evaporation rate through intake valve heat transfer.

  • PDF

Scrubber를 장착한 EGR 시스템이 디젤기관의 성능특성에 미치는 영향 (Effects on Performance Characteristics of Diesel Engine by EGR system with Scrubber)

  • 임재근
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제23권2호
    • /
    • pp.184-191
    • /
    • 1999
  • Th effects of exhaust gas recirculation(EGR) on the characteristics of combustion exhaust emissions and specific fuel consumption(SFC) are experimentally investigated by four-cylin-der four-cycle and direct injection marine diesel engine. In order to reduce soot contents in the recirculated exhaust gas to intake system of the engines a novel diesel soot removal system with a cylinder-type scrubber which has water injector(4 nozzles in 1.0mm diameter)is specially designed and manufactured for the experi-mental system. The obtained results are as follows; The combustion pressure in cylinder is decreased and ignition is delayed with increasing EGR rate. The accumulated quantity of heat release is slightly decreased and the tendency of heat release rate is not constant. NOx and Soot emissions are decreased by maximum 7% and 540% with scrubber tan without scrubber in the range of experimental conditions. Those are increased at the lean burn area with increasing equivalence ration in the constant value of engine speed and EGR rate. Also those are decreased with increasing EGR rate in the constant value of engine speed and equivalence ratio.

  • PDF

EFFECT OF MIXTURE PREPARATION IN A DIESEL HCCI ENGINE USING EARLY IN-CYLINDER INJECTION DURING THE SUCTION STROKE

  • Nathan, S. Swami;Mallikarjuna, J.M.;Ramesh, A.
    • International Journal of Automotive Technology
    • /
    • 제8권5호
    • /
    • pp.543-553
    • /
    • 2007
  • It is becoming increasingly difficult for engines using conventional fuels and combustion techniques to meet stringent emission norms. The homogeneous charge compression ignition(HCCI) concept is being evaluated on account of its potential to control both smoke and NOx emissions. However, HCCI engines face problems of combustion control. In this work, a single cylinder water-cooled diesel engine was operated in the HCCI mode. Diesel was injected during the suction stroke($0^{\circ}$ to $20^{\circ}$ degrees aTDC) using a special injection system in order to prepare a nearly homogeneous charge. The engine was able to develop a BMEP(brake mean effective pressure) in the range of 2.15 to 4.32 bar. Extremely low levels of NOx emissions were observed. Though the engine operation was steady, poor brake thermal efficiency(30% lower) and high HC, CO and smoke were problems. The heat release showed two distinct portions: cool flame followed by the main heat release. The low heat release rates were found to result in poor brake thermal efficiency at light loads. At high brake power outputs, improper combustion phasing was the problem. Fuel deposited on the walls was responsible for increased HC and smoke emissions. On the whole, proper combustion phasing and a need for a well- matched injection system were identified as the important needs.

가솔린 엔진에서 배기 온도 저감을 위한 열교환기 설계 최적화 (Design of a Heat Exchanger to Reduce the Exhaust Temperature in a Spark-Ignition Engine)

  • 이석환;박정서;배충식
    • 한국자동차공학회논문집
    • /
    • 제15권3호
    • /
    • pp.10-17
    • /
    • 2007
  • Design of experiments (DOE) technique has been used to design an exhaust heat exchanger to reduce the exhaust gas temperature under high load conditions in a spark-ignition engine. The DOE evaluates the influence and the interaction of a selected eight design parameters of the heat exchanger affecting the cooling performance of the exhaust gas through a limited number of experiments. The heat exchanger was installed between the exhaust manifold and the inlet of the close-coupled catalytic converter (CCC) to reduce thermal aging. To maximize the heat transfer between exhaust gas and coolant, fins were implemented at the inner surface of the heat exchanger. The design parameters consist of the fin geometry (length, thickness, arrangement, and number of fin), coolant direction, heat exchanger wall thickness, and the length of the heat exchanger. The acceptable range of each design parameter is discussed by analyzing the DOE results.

ICE GROSS HEAT RELEASE STRONGLY INFLUENCED BY SPECIFIC HEAT RATIO VALVES

  • Lanzafame, R.;Messina, M.
    • International Journal of Automotive Technology
    • /
    • 제4권3호
    • /
    • pp.125-133
    • /
    • 2003
  • Several models for the evaluation of Gross Heat Release from the internel combustion engine (ICE) are often used in literature. One of these is the First Law - Single Zone Model (FL-SZM), derived from the First Law of Thermodynamic. This model present a twice advantage: first it describes with accuracy the physic of the phenomenon (charge heat release during the combustion stroke and heat exchange between gas and cylinder wall); second it hat a great simplicity in the mathematical formulation. The evaluation of Heat Release with the FL-SZM is based on pressure experimental measurements inside the cylinder, and ell the assumption of several parameters as the specific heat ratio, wall temperature, polytropic exponent for the motored cycle evaluation, and many others. In this paper the influence of gases thermodynamic properties on Cross Heat Release has been esteemed. In particular the influence of an appropriate equation for k=k(T) (specific heat ratio vs. temperature) which describes the variations of gases thermodynamic properties with the mean temperature inside the cylinder has been evaluated. This equation has been calculated by new V order Logarithmic Polynomials (VoLP), fitting experimental gases properties through the least square methods.

연손실 순간온도 측저에 있어서 돌출높이에 따른 실험적 연구 (Study on the Heat Flux Using Instantaneous Temperature as Height of Probe in the Combustion Chamber)

  • 이치우;김지훈;김시범
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제25권2호
    • /
    • pp.395-402
    • /
    • 2001
  • The gasoline engine tends to high performance, fuel economy, small-sized. Therefore, it is necessary to solve the problems on thermal load, abnormal combustion, etc, in the engine, Thine film instantaneous temperature measurement probe was made. And the manufactural method of probe was established. The instantaneous surface temperatures in the constant volume combustion chamber were measured by this probe and the heat flux was obtained by Fourier analysis. The authors measured the wall temperature of combustion chamber and computed the heat flux through the cylinder wall in order to understand the combustion characteristics depending on height of probe. For achieving this goal, the thin film instantaneous temperature probe was developed for analyzing the instantaneous surface wall temperature and unsteady heat flux on the constant volume combustion chamber.

  • PDF

熱機關의 最適 運轉條件 (The optimal operation condition of heat engine)

  • 정평석;김수연
    • 대한기계학회논문집
    • /
    • 제11권6호
    • /
    • pp.971-974
    • /
    • 1987
  • 본 연구에서는 최적설계를 위한 기초로서, 고정된 두 열원사이에서 작동하는 열기관을 예로 들어 운전조건에 따른 출력과 효율의 변화를 정성적으로 설명하여 출력 과 효율의 최대값이 극대값으로 나타남을 보이고, 경제적 측면에서 이들의 의의 및 경 제적 최적운전조건과의 관계 등을 고찰하려 한다.