• 제목/요약/키워드: heat dissipation layer

검색결과 41건 처리시간 0.03초

레일 체결구 결함 검측 모듈의 방열성능 개선을 위한 열 해석 (Thermal Analysis for Improvement of Heat Dissipation Performance of the Rail Anchoring Failure Detection Module)

  • 채원규;박영;권삼영;이재형
    • 한국전기전자재료학회논문지
    • /
    • 제29권2호
    • /
    • pp.125-130
    • /
    • 2016
  • In this paper, various heat dissipation designs for a rail anchoring failure detection module were investigated by a thermal flow analysis. For the detection module with the heat dissipation design on the overall housing surface, an average temperature inside the module was lowered by $25^{\circ}C$ when compared to no heat dissipation design. In addition, an internal heat-flow blocking layer and an heat conduction layer inserted between the LED module and housing case were effective in reducing the temperature in the rail anchoring failure detection, which has a limited space for installation and little air flow. Especially, the temperature near LED module decreased below $55^{\circ}C$ when the optimal heat dissipation design was applied.

이상적인 열방산 효과를 위한 GaN on Diamond 구조의 제안과 접합매개층 종류에 따른 열전달 시뮬레이션 비교 (Suggestion and Design of GaN on Diamond Structure for an Ideal Heat Dissipation Effect and Evaluation of Heat Transfer Simulation as Different Adhesion Layer)

  • 김종철;김찬일;양승한
    • 한국전기전자재료학회논문지
    • /
    • 제30권5호
    • /
    • pp.270-275
    • /
    • 2017
  • Current progress in the development of semiconductor technology in applications involving high electron mobility transistors (HEMT) and power devices is hindered by the lack of adequate ways todissipate heat generated during device operation. Concurrently, electronic devices that use gallium nitride (GaN) substrates do not perform well, because of the poor heat dissipation of the substrate. Suggested alternatives for overcoming these limitations include integration of high thermal conductivity material like diamond near the active device areas. This study will address a critical development in the art of GaN on diamond (GOD) structure by designing for ideal heat dissipation, in order to create apathway with the least thermal resistance and to improve the overall ease of integrating diamond heat spreaders into future electronic devices. This research has been carried out by means of heat transfer simulation, which has been successfully demonstrated by a finite-element method.

Metal PCB에 있어서 양극산화법으로 제작한 Al2O3절연막의 방열특성 (Heat dissipation of Al2O3 Insulation layer Prepared by Anodizing Process for Metal PCB)

  • 조재승;김정호;고상원;임실묵
    • 한국표면공학회지
    • /
    • 제48권2호
    • /
    • pp.33-37
    • /
    • 2015
  • High efficiency LED device is being concerned due to its high heat loss, and such heat loss will cause a shorter lifespan and lower efficiency. Since there is a demand for the materials that can release heat quickly into the external air, the organic insulating layer was required to be replaced with high thermal conductive materials such as metal or ceramics. Through anodizing the upper layer of Al, the Breakdown Voltage of 3kV was obtained by using an uniform thickness of $60{\mu}M$ aluminum oxide($Al_2O_3$) and was carried out to determine the optimum process conditions when thermal cracking does not occur. Two Ni layers were formed above the layer of $Al_2O_3$ by sputtering deposition and electroplating process, and saccharin was added for the purpose of minimizing the remain stress in electroplating process. The results presented that the 3-layer film including the Ni layer has an adhesive force of 10N and the thermal conductivity for heat dissipation is achieved by 150W/mK level, and leads to improvement about 7 times or above in thermal conductivity, as opposed to the organic insulation layer.

Fe/Ni 합금전착에 의한 다공성 그물군조 방열재료의 제조 연구 (Fabrication of Porous Reticular Metal by Electrodeposition of Fe/Ni Alloy for Heat Dissipation Materials)

  • 이화영;이관희;정원용
    • 전기화학회지
    • /
    • 제5권3호
    • /
    • pp.125-130
    • /
    • 2002
  • 다공성 그물구조 금속을 반도체 칩 방열재료로써 활용하기 위한 실험을 실시하였다. 이를 위해 다공성 그물구조 구리와 반도체 칩 사이의 열팽창 차이를 최소화하기 위한 시도로써 다공성 구리에 대한 Fe/Ni 합금전착을 수행하였다. Fe/Ni 합금전착 실험으로 표준 Hull Cell을 구성하고 전류밀도 분포에 따른 Fe/Ni 합금층 내의 조성변화를 관찰하였으며, 실험결과 합금전착시 이상공석현상으로 인하여 전해액의 교반정도에 따라 합금층 조성이 크게 영향을 받는 것으로 나타났다. 본 실험에서는 paddle type 교반기를 사용하여 전해질의 확산을 제어하는 방법으로 원하는 조성의 Fe/Ni 합금층을 얻을 수 있었으며, 얻어진 Fe/Ni 후막을 대상으로 TMA 열분석을 실시한 결과 구리에 비해 훨씬 낮은 열팽창율을 보이는 것으로 나타났다. 또한, 본 실험에서 Fe/Ni 합금전착을 통하여 제작한 다공성 그물구조 금속을 대상으로 방열성능을 측정한 결과 구리 평판 대비 최대 2배 이상의 방열성능을 보여 반도체 칩 방열재료로의 활용 가능성을 높여 주었다.

Boundary layer analysis of persistent moving horizontal needle in Blasius and Sakiadis magnetohydrodynamic radiative nanofluid flows

  • Krishna, Penem Mohan;Sharma, Ram Prakash;Sandeep, Naramgari
    • Nuclear Engineering and Technology
    • /
    • 제49권8호
    • /
    • pp.1654-1659
    • /
    • 2017
  • The boundary layer of a two-dimensional forced convective flow along a persistent moving horizontal needle in an electrically conducting magnetohydrodynamic dissipative nanofluid was numerically investigated. The energy equation was constructed with Joule heating, viscous dissipation, uneven heat source/sink, and thermal radiation effects. We analyzed the boundary layer behavior of a continuously moving needle in Blasius (moving fluid) and Sakiadis (quiescent fluid) flows. We considered Cu nanoparticles embedded in methanol. The reduced system of governing Partial differential equations (PDEs) was solved by employing the Runge-Kutta-based shooting process. Computational outcomes of the rate of heat transfer and friction factors were tabulated and discussed. Velocity and temperature descriptions were examined with the assistance of graphical illustrations. Increasing the needle size did not have a significant influence on the Blasius flow. The heat transfer rate in the Sakiadis flow was high compared with that in the Blasius flow.

적층형 디지털송수신모듈의 방열특성 분석 (Analysis on Heat Dissipation Characteristics of a Tile-Type Digital Transmitter/Receiver Module)

  • 윤기철;김상운;허재훈;곽노진;김찬홍
    • 한국군사과학기술학회지
    • /
    • 제22권2호
    • /
    • pp.249-254
    • /
    • 2019
  • A Digital Transmitter/Receiver Module(DTRM), which is an essential part in active phased-array radar systems, generates a high heat density, and needs to be properly cooled for stable operation. A tile-type DTRM that is a stacking structure of multi-layer components was modeled with simplification and heat dissipation characteristics of the DTRM model were studied using computational fluid dynamics(CFD) simulations. Most of the heat was dissipated by the heat conduction through the cold plate, but the heat transfer by the forced convection on top of the DTRM also was found to play an important role in the thermal management. Under the given conjugated heat transfer environment, the DTRM was confirmed to secure a stable operating temperature range.

The Effect of Spacer on Microclimate and Comfort Sensation in Protective Clothing for Firefighters

  • Chung, Gi-Soo;Lee, Dae-Hoon
    • 한국의류산업학회지
    • /
    • 제4권6호
    • /
    • pp.564-566
    • /
    • 2002
  • Protective clothing for firefighters typically consists of a flame resistant outer shell and inner layers. The inner layers are generally composed of a moisture barrier and a thermal barrier. On performing the task in fire place the heat and perspiration generated from the body become trapped inside the protective clothing. Those heat and moisture result into heat-stress and physical fatigue of fire fighter, which hinder the work. Therefore, the system of clothing designs and material layers must be chosen carefully to balance protection and comfort. 3 kinds of protective clothing of 3 layer structure were used in the experiment of physiological comfort. From the comparison of wear trials with the 3 kinds of layers in firefighters clothing, it indicates that the moisture dissipation of A+B2+C was highest, following A+BI+C andA+B3+C. And the heat dissipation of A+BI+C and A+B2+C were better than A+B3+C. In the protective clothing with A+B3+C, heat and perspiration generated through exercise remained in clothing system long and caused discomfort.

Non Darcy Mixed Convection Flow of Magnetic Fluid over a Permeable Stretching Sheet with Ohmic Dissipation

  • Zeeshan, A.;Majeed, A.
    • Journal of Magnetics
    • /
    • 제21권1호
    • /
    • pp.153-158
    • /
    • 2016
  • This paper aims to discuss the Non Darcy boundary layer flow of non-conducting viscous fluid with magnetic ferroparticles over a permeable linearly stretching surface with ohmic dissipation and mixed convective heat transfer. A magnetic dipole is applied "a" distance below the surface of stretching sheet. The governing equations are modeled. Similarity transformation is used to convert the system of partial differential equations to a system of non-linear but ordinary differential equations. The ODEs are solved numerically. The effects of sundry parameters on the flow properties like velocity, pressure, skin-friction coefficient and Nusselt number are presented. It is deduced the frictional resistance of Lorentz force decreases with stronger electric field and the trend reverses for temperature. Skin friction coefficient increase with increase in ferromagnetic interaction parameter. Whereas, Nusselt number decrease.

Analysis of the thermal management of a high power LED package with a heat pipe

  • Kim, Jong-Soo;Kim, Eun-Pil
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제40권2호
    • /
    • pp.96-101
    • /
    • 2016
  • The thermal management of high-power LED components in an assembly structure is crucial for the stable operation and proper luminous function. This study employs numerical tools to determine the optimum thermal design in LEDs with a heat sink consisting of a crevice-type vapor-chamber heat pipe. The effects of the MCPCB are investigated in terms of the substrate thicknesses on which the LEDs are mounted. Further, different placement configurations in a system module are considered. This study found that for a confined area, a power of 40 W/LED is applicable to a high-power package. Furthermore, the thermal conductivity of dielectric layer materials should ideally be greater than 0.9 W/m.K. The temperature conditions of the vapor chamber in a heat pipe greatly affect the thermal performance of the system. At an offset distance of 9.0 mm and a $2^{\circ}C$ increase in the temperature of the heat pipe, the resulting maximum temperature increase is approximately $1.9^{\circ}C$ for each heat dissipation temperature. Finally, at a thermal conductivity of 0.3 W/m.K, it was found that the total thermal resistance changes dramatically. Above 1.2 W/m.K, the resistance change reduces exponentially.

금속판으로 봉인된 유-무기 보호 박막을 갖는 OLED 봉지 방법 (Encapsulation Method of OLED with Organic-Inorganic Protective Thin Films Sealed with Metal Sheet)

  • 임수용;서정현;주성후
    • 한국전기전자재료학회논문지
    • /
    • 제26권7호
    • /
    • pp.539-544
    • /
    • 2013
  • To study the encapsulation method for heat dissipation of high brightness organic light emitting diode (OLED), red emitting OLED of ITO (150 nm) / 2-TNATA (50 nm) / NPB (30 nm) / $Alq_3$ : 1 vol.% Rubrene (30 nm) / $Alq_3$ (30 nm) / LiF (0.7 nm) / Al (200 nm) structure was fabricated, which on $Alq_3$ (150 nm) / LiF (150 nm) as buffer layer and Al as protective layer was deposited to protect the damage of OLED, and subsequently it was encapsulated using attaching film and metal sheet. The current density, luminance and power efficiency was improved according to thickness of Al protective layer. The emission spectrum and the Commission International de L'Eclairage (CIE) coordinate did not have any effects on encapsulation process using attaching film and metal sheet The lifetime of encapsulated OLED using attaching film and metal sheet was 307 hours in 1,200 nm Al thickness, which was increased according to thickness of Al protective layer, and was improved 7% compared with 287 hours, lifetime of encapsulated OLED using attaching film and flat glass. As a result, it showed the improved current density, luminance, power efficiency and the long lifetime, because the encapsulation method using attaching film and metal sheet could radiate the heat on OLED effectively.