• Title/Summary/Keyword: health monitoring systems

Search Result 879, Processing Time 0.028 seconds

Optimal Sensor Placement for Improved Prediction Accuracy of Structural Responses in Model Test of Multi-Linked Floating Offshore Systems Using Genetic Algorithms (다중연결 해양부유체의 모형시험 구조응답 예측정확도 향상을 위한 유전알고리즘을 이용한 센서배치 최적화)

  • Kichan Sim;Kangsu Lee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.37 no.3
    • /
    • pp.163-171
    • /
    • 2024
  • Structural health monitoring for ships and offshore structures is important in various aspects. Ships and offshore structures are continuously exposed to various environmental conditions, such as waves, wind, and currents. In the event of an accident, immense economic losses, environmental pollution, and safety problems can occur, so it is necessary to detect structural damage or defects early. In this study, structural response data of multi-linked floating offshore structures under various wave load conditions was calculated by performing fluid-structure coupled analysis. Furthermore, the order reduction method with distortion base mode was applied to the structures for predicting the structural response by using the results of numerical analysis. The distortion base mode order reduction method can predict the structural response of a desired area with high accuracy, but prediction performance is affected by sensor arrangement. Optimization based on a genetic algorithm was performed to search for optimal sensor arrangement and improve the prediction performance of the distortion base mode-based reduced-order model. Consequently, a sensor arrangement that predicted the structural response with an error of about 84.0% less than the initial sensor arrangement was derived based on the root mean squared error, which is a prediction performance evaluation index. The computational cost was reduced by about 8 times compared to evaluating the prediction performance of reduced-order models for a total of 43,758 sensor arrangement combinations. and the expected performance was overturned to approximately 84.0% based on sensor placement, including the largest square root error.

Effects of Environmental Conditions on Vegetation Indices from Multispectral Images: A Review

  • Md Asrakul Haque;Md Nasim Reza;Mohammod Ali;Md Rejaul Karim;Shahriar Ahmed;Kyung-Do Lee;Young Ho Khang;Sun-Ok Chung
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.4
    • /
    • pp.319-341
    • /
    • 2024
  • The utilization of multispectral imaging systems (MIS) in remote sensing has become crucial for large-scale agricultural operations, particularly for diagnosing plant health, monitoring crop growth, and estimating plant phenotypic traits through vegetation indices (VIs). However, environmental factors can significantly affect the accuracy of multispectral reflectance data, leading to potential errors in VIs and crop status assessments. This paper reviewed the complex interactions between environmental conditions and multispectral sensors emphasizing the importance of accounting for these factors to enhance the reliability of reflectance data in agricultural applications.An overview of the fundamentals of multispectral sensors and the operational principles behind vegetation index (VI) computation was reviewed. The review highlights the impact of environmental conditions, particularly solar zenith angle (SZA), on reflectance data quality. Higher SZA values increase cloud optical thickness and droplet concentration by 40-70%, affecting reflectance in the red (-0.01 to 0.02) and near-infrared (NIR) bands (-0.03 to 0.06), crucial for VI accuracy. An SZA of 45° is optimal for data collection, while atmospheric conditions, such as water vapor and aerosols, greatly influence reflectance data, affecting forest biomass estimates and agricultural assessments. During the COVID-19 lockdown,reduced atmospheric interference improved the accuracy of satellite image reflectance consistency. The NIR/Red edge ratio and water index emerged as the most stable indices, providing consistent measurements across different lighting conditions. Additionally, a simulated environment demonstrated that MIS surface reflectance can vary 10-20% with changes in aerosol optical thickness, 15-30% with water vapor levels, and up to 25% in NIR reflectance due to high wind speeds. Seasonal factors like temperature and humidity can cause up to a 15% change, highlighting the complexity of environmental impacts on remote sensing data. This review indicated the importance of precisely managing environmental factors to maintain the integrity of VIs calculations. Explaining the relationship between environmental variables and multispectral sensors offers valuable insights for optimizing the accuracy and reliability of remote sensing data in various agricultural applications.

Growth of Soybean Sprouts and Concentration of $CO_2$ Produced in Culture Vessel Affected by Watering Methods (살수방식에 따른 재배용기내 Gas 조성 및 콩나물의 생육 변화)

  • 배경근;남승우;김경남;황영현
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.49 no.3
    • /
    • pp.167-171
    • /
    • 2004
  • The growth of soybean sprout was greatly influenced by watering systems: Fixed watering system (water tub was loaded at ceiling upper of culture box and water was showered by bottom holes) was estimated the better than that of reciprocating watering and tub immersing watering because it could cool down the temperature in culture box and wash the organic substances on the body of sprout. The fixed watering system showed good body color and preventing effect of partial rotting of sprout because it could discharge $\textrm{CO}_2$ gas effectively in culture box and keep the concentration below 5%. The concentration of gases at the bottom (about 30 cm height from basal plate) of culture box in fourth or fifth days was L6% for $\textrm{CO}_2$ and 13-16% for $\textrm{O}_2$, respectively. The optimum gas concentration in culture box was considered to be over 10% for $\textrm{O}_2$ and below 5% for $\textrm{CO}_2$.

Study of system using load cell for real time weight sensing of artificial incubator (인공부화기의 실시간 중량감지를 위한 로드셀을 이용한 시스템 연구)

  • jeong, Jin-hyoung;Kim, Ae-kyung;Lee, Sang-Sik
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.2
    • /
    • pp.144-149
    • /
    • 2018
  • The eggs are incubated for 18 days through the generator and incubated in the developing incubator. During the developmental period, the weight loss of the fetus is correlated with the ventricular formation, and the proper ventricular formation is also associated with the healthy embryonic hatching and the egg hatching rate. However, in the incubator period of the domestic hatchery, it is a reality to acquire the resultant side by the Iranian standard weight measurement with the experience of the hatchery and the person concerned and the development period without the apparatus for measuring the present weight. As a result, prevalence of early mortality, hunger and illness during hatching are frequent. Monitoring the reduction of weaning weight is crucial to obtaining chick quality and hatching performance with weight changes within the development machine. Water loss is different depending on the size of eggs, egg shell, and elder group. We can expect to increase the hatching rate by measuring the weight change in real time and optimizing the ventilation change accordingly. There is a need to develop a real-time measurement system that can control 10 to 13% reduction of the total weight during hatching. The system through this study is a way to check the one - time directly when moving the existing egg, and it is impossible to control the measurement of the fetal water evaporation within the development period. Unlike systems that do not affect the hatching rate, four load cells are connected in parallel on the Arduino sketch board and the AT-command command is used to connect the mobile phone and computer in real time. The communication speed of Bluetooth was set to 15200 to match the communication speed of Arduino and Hyper-terminal program. The real - time monitoring system was designed to visually check the change of the weight of the fetus in the artificial incubator. In this way, we aimed to improve the hatching rate and health condition of the hatching eggs.

The Present State of Marine Oil Spills and the Enhancement Plans of National Oil Spill Response Capability in Vietnam - Through the Comparison of Statistics and OSR System between Vietnam and Republic of Korea - (베트남의 해양기름유출 현황과 국가대응역량 증강 방안 - 통계자료와 유출유 방제시스템에 대한 베트남과 한국 간의 비교를 통하여 -)

  • Phan, Van Hung;Kim, Kwang-Soo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.6
    • /
    • pp.690-698
    • /
    • 2017
  • Vietnam is a marine nation with more than 3,444 km of shorelines, thousands of islands, and 2,360 rivers and canals of over 42,000 km long. As the frequency and the volume of oil transportation by ships increase, the possibility of oil spill incidents becomes higher than ever. Fuel oil and cargo oil spills at sea have widespread impact and long-term consequences on marine ecosystems, coastal resources and human health as well as socio-economy. This study is to show not only the present state of marine oil spills in Vietnam such as the number and the volume of oil spills for two decades, and an overall about Vietnamese national response system like national framework for Oil Spill Response (OSR), etc. but also to present the recommendations for enhancing national capability in response to oil spill incidents in Vietnam, especially, with a comparison of national OSR systems between Vietnam and South Korea. As the result, the number and the volume of marine oil spills in Vietnam showed an upward trend as opposed to a downward trend in South Korea. This means that Vietnam has the possibility of oil spills in coastal waters. Therefore, three main recommendations for the enhancement of national OSR capability in Vietnam are proposed as follows: (1) the development of alternative plan for reenforcing national OSR system involving legal system for preparedness and response to oil spill pollution such as the acceptance and implementation of OPRC Convention as well as the establishment of national fund compensating for the damage and loss caused by oil pollution; (2) the enhancement of a consistent reporting, alerting and monitoring system; and (3) the development of training and exercise programs with standard contents of educational courses.

Bioconcentration Factor(BCF) of Perchlorate from Agricultural Products and Soils (농산물과 토양에 대한 퍼클로레이트 함량 평가 및 생물농축계수 산출)

  • Kim, Ji-Young;Kim, Min-Ji;Lee, Jeong-Mi;Kim, Doo-Ho;Park, Ki-Moon;Kim, Won-Il
    • Korean Journal of Environmental Agriculture
    • /
    • v.32 no.3
    • /
    • pp.224-230
    • /
    • 2013
  • BACKGROUND: Perchlorate(${ClO_4}^-$) is an anion that is extremely water-soluble and environmentally stable. It mostly exists in the form of sodium perchlorate, ammonium perchlorate and potassium perchlorate which are used in rocket fuels, propellants, ignitable sources, air bag inflation systems and explosives. Perchlorate can be taken into the thyroid glands and interfere with iodide uptake. The determination of perchlorate in agricultural products is important due to its potential health impact on humans. The objective of this study was to determine the perchlorate concentrations in the samples of various agricultural products and soils. METHODS AND RESULTS: In this study, samples of cereal(Rice, Barley, Corn, Bean), vegetable(Spinach, Lettuce, Sesame, Chives, Chili, Pumpkin, Tomato), fruit(Apple, Pear, Tangerine, Grape) were analyzed for perchlorate contents. Perchlorate concentrations were analyzed by liquid chromatography-tandem mass spectrometry. The results showed that agricultural products respectively contained perchlorate concentrations in the range of : cereals N.D.~$7.46{\mu}g/kg$, vegetables $0.52{\sim}23.06{\mu}g/kg$, fruits $0.19{\sim}2.66{\mu}g/kg$. Bioconcentration factor was in the order of : vegetables > cereals > fruits. Bioconcentration factor was highest follwed by Sesame 37.88, Corn 21.51, Spinach 10.57, Tangerine 4.39, Chives 2.89 and Lettuce 1.90. The recoveries of perchlorate from spiked agricultural products and soils ranged from 87.72~111.26% and 102.09~111.23%. CONCLUSION(S): The health risk assessment results obtained in this study are lower than the RfD(Reference Dose, 0.0007 mg/kg/body weight/day) value as suggested by the Integrated Risk Information System(US IRIS). Our results indicate that, people currently exposed to perchlorate from agricultural products consumption are considered as safe.

Analysis of News Agenda Using Text mining and Semantic Network Analysis: Focused on COVID-19 Emotions (텍스트 마이닝과 의미 네트워크 분석을 활용한 뉴스 의제 분석: 코로나 19 관련 감정을 중심으로)

  • Yoo, So-yeon;Lim, Gyoo-gun
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.1
    • /
    • pp.47-64
    • /
    • 2021
  • The global spread of COVID-19 around the world has not only affected many parts of our daily life but also has a huge impact on many areas, including the economy and society. As the number of confirmed cases and deaths increases, medical staff and the public are said to be experiencing psychological problems such as anxiety, depression, and stress. The collective tragedy that accompanies the epidemic raises fear and anxiety, which is known to cause enormous disruptions to the behavior and psychological well-being of many. Long-term negative emotions can reduce people's immunity and destroy their physical balance, so it is essential to understand the psychological state of COVID-19. This study suggests a method of monitoring medial news reflecting current days which requires striving not only for physical but also for psychological quarantine in the prolonged COVID-19 situation. Moreover, it is presented how an easier method of analyzing social media networks applies to those cases. The aim of this study is to assist health policymakers in fast and complex decision-making processes. News plays a major role in setting the policy agenda. Among various major media, news headlines are considered important in the field of communication science as a summary of the core content that the media wants to convey to the audiences who read it. News data used in this study was easily collected using "Bigkinds" that is created by integrating big data technology. With the collected news data, keywords were classified through text mining, and the relationship between words was visualized through semantic network analysis between keywords. Using the KrKwic program, a Korean semantic network analysis tool, text mining was performed and the frequency of words was calculated to easily identify keywords. The frequency of words appearing in keywords of articles related to COVID-19 emotions was checked and visualized in word cloud 'China', 'anxiety', 'situation', 'mind', 'social', and 'health' appeared high in relation to the emotions of COVID-19. In addition, UCINET, a specialized social network analysis program, was used to analyze connection centrality and cluster analysis, and a method of visualizing a graph using Net Draw was performed. As a result of analyzing the connection centrality between each data, it was found that the most central keywords in the keyword-centric network were 'psychology', 'COVID-19', 'blue', and 'anxiety'. The network of frequency of co-occurrence among the keywords appearing in the headlines of the news was visualized as a graph. The thickness of the line on the graph is proportional to the frequency of co-occurrence, and if the frequency of two words appearing at the same time is high, it is indicated by a thick line. It can be seen that the 'COVID-blue' pair is displayed in the boldest, and the 'COVID-emotion' and 'COVID-anxiety' pairs are displayed with a relatively thick line. 'Blue' related to COVID-19 is a word that means depression, and it was confirmed that COVID-19 and depression are keywords that should be of interest now. The research methodology used in this study has the convenience of being able to quickly measure social phenomena and changes while reducing costs. In this study, by analyzing news headlines, we were able to identify people's feelings and perceptions on issues related to COVID-19 depression, and identify the main agendas to be analyzed by deriving important keywords. By presenting and visualizing the subject and important keywords related to the COVID-19 emotion at a time, medical policy managers will be able to be provided a variety of perspectives when identifying and researching the regarding phenomenon. It is expected that it can help to use it as basic data for support, treatment and service development for psychological quarantine issues related to COVID-19.

A standardized procedure on building spectral library for hazardous chemicals mixed in river flow using hyperspectral image (초분광 영상을 활용한 하천수 혼합 유해화학물질 표준 분광라이브러리 구축 방안)

  • Gwon, Yeonghwa;Kim, Dongsu;You, Hojun
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.10
    • /
    • pp.845-859
    • /
    • 2020
  • Climate change and recent heat waves have drawn public attention toward other environmental issues, such as water pollution in the form of algal blooms, chemical leaks, and oil spills. Water pollution by the leakage of chemicals may severely affect human health as well as contaminate the air, water, and soil and cause discoloration or death of crops that come in contact with these chemicals. Chemicals that may spill into water streams are often colorless and water-soluble, which makes it difficult to determine whether the water is polluted using the naked eye. When a chemical spill occurs, it is usually detected through a simple contact detection device by installing sensors at locations where leakage is likely to occur. The drawback with the approach using contact detection sensors is that it relies heavily on the skill of field workers. Moreover, these sensors are installed at a limited number of locations, so spill detection is not possible in areas where they are not installed. Recently hyperspectral images have been used to identify land cover and vegetation and to determine water quality by analyzing the inherent spectral characteristics of these materials. While hyperspectral sensors can potentially be used to detect chemical substances, there is currently a lack of research on the detection of chemicals in water streams using hyperspectral sensors. Therefore, this study utilized remote sensing techniques and the latest sensor technology to overcome the limitations of contact detection technology in detecting the leakage of hazardous chemical into aquatic systems. In this study, we aimed to determine whether 18 types of hazardous chemicals could be individually classified using hyperspectral image. To this end, we obtained hyperspectral images of each chemical to establish a spectral library. We expect that future studies will expand the spectral library database for hazardous chemicals and that verification of its application in water streams will be conducted so that it can be applied to real-time monitoring to facilitate rapid detection and response when a chemical spill has occurred.

Development of a complex failure prediction system using Hierarchical Attention Network (Hierarchical Attention Network를 이용한 복합 장애 발생 예측 시스템 개발)

  • Park, Youngchan;An, Sangjun;Kim, Mintae;Kim, Wooju
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.4
    • /
    • pp.127-148
    • /
    • 2020
  • The data center is a physical environment facility for accommodating computer systems and related components, and is an essential foundation technology for next-generation core industries such as big data, smart factories, wearables, and smart homes. In particular, with the growth of cloud computing, the proportional expansion of the data center infrastructure is inevitable. Monitoring the health of these data center facilities is a way to maintain and manage the system and prevent failure. If a failure occurs in some elements of the facility, it may affect not only the relevant equipment but also other connected equipment, and may cause enormous damage. In particular, IT facilities are irregular due to interdependence and it is difficult to know the cause. In the previous study predicting failure in data center, failure was predicted by looking at a single server as a single state without assuming that the devices were mixed. Therefore, in this study, data center failures were classified into failures occurring inside the server (Outage A) and failures occurring outside the server (Outage B), and focused on analyzing complex failures occurring within the server. Server external failures include power, cooling, user errors, etc. Since such failures can be prevented in the early stages of data center facility construction, various solutions are being developed. On the other hand, the cause of the failure occurring in the server is difficult to determine, and adequate prevention has not yet been achieved. In particular, this is the reason why server failures do not occur singularly, cause other server failures, or receive something that causes failures from other servers. In other words, while the existing studies assumed that it was a single server that did not affect the servers and analyzed the failure, in this study, the failure occurred on the assumption that it had an effect between servers. In order to define the complex failure situation in the data center, failure history data for each equipment existing in the data center was used. There are four major failures considered in this study: Network Node Down, Server Down, Windows Activation Services Down, and Database Management System Service Down. The failures that occur for each device are sorted in chronological order, and when a failure occurs in a specific equipment, if a failure occurs in a specific equipment within 5 minutes from the time of occurrence, it is defined that the failure occurs simultaneously. After configuring the sequence for the devices that have failed at the same time, 5 devices that frequently occur simultaneously within the configured sequence were selected, and the case where the selected devices failed at the same time was confirmed through visualization. Since the server resource information collected for failure analysis is in units of time series and has flow, we used Long Short-term Memory (LSTM), a deep learning algorithm that can predict the next state through the previous state. In addition, unlike a single server, the Hierarchical Attention Network deep learning model structure was used in consideration of the fact that the level of multiple failures for each server is different. This algorithm is a method of increasing the prediction accuracy by giving weight to the server as the impact on the failure increases. The study began with defining the type of failure and selecting the analysis target. In the first experiment, the same collected data was assumed as a single server state and a multiple server state, and compared and analyzed. The second experiment improved the prediction accuracy in the case of a complex server by optimizing each server threshold. In the first experiment, which assumed each of a single server and multiple servers, in the case of a single server, it was predicted that three of the five servers did not have a failure even though the actual failure occurred. However, assuming multiple servers, all five servers were predicted to have failed. As a result of the experiment, the hypothesis that there is an effect between servers is proven. As a result of this study, it was confirmed that the prediction performance was superior when the multiple servers were assumed than when the single server was assumed. In particular, applying the Hierarchical Attention Network algorithm, assuming that the effects of each server will be different, played a role in improving the analysis effect. In addition, by applying a different threshold for each server, the prediction accuracy could be improved. This study showed that failures that are difficult to determine the cause can be predicted through historical data, and a model that can predict failures occurring in servers in data centers is presented. It is expected that the occurrence of disability can be prevented in advance using the results of this study.