• Title/Summary/Keyword: health impact assessment

Search Result 563, Processing Time 0.023 seconds

The Impact of Perforator Number on Deep Inferior Epigastric Perforator Flap Breast Reconstruction

  • Grover, Ritwik;Nelson, Jonas A.;Fischer, John P.;Kovach, Stephen J.;Serletti, Joseph M.;Wu, Liza C.
    • Archives of Plastic Surgery
    • /
    • v.41 no.1
    • /
    • pp.63-70
    • /
    • 2014
  • Background Perforator flaps minimize abdominal site morbidity during autologous breast reconstruction. The purpose of this study was to assess whether the number of perforators harvested influences the overall deep inferior epigastric perforator (DIEP) flap survival and flap-related complications. Methods A retrospective review was performed of all DIEP flaps performed at the Hospital of the University of Pennsylvania from 2006 to 2011. The outcomes assessed included flap loss and major complications. We compared flaps by the number of total perforators (1-4) and then carried out a subgroup analysis comparing flaps with one perforator to flaps with multiple perforators. Lastly, we conducted a post-hoc analysis based on body mass index (BMI) categorization. Results Three hundred thirty-three patients underwent 395 DIEP flaps. No significant differences were noted in the flap loss rate or the overall complications across perforator groups. However, the subgroup analysis revealed significantly higher rates of fat necrosis in the case of one-perforator flaps than in the case of multiple-perforator flaps (10.2% vs. 3.1%, P=0.009). The post-hoc analysis revealed a significant increase in the flap loss rate with increasing BMI (<30=2.0%, 30-34.9=3.1%, 35-39.9=3.1%, >40=42.9%, P<0.001) in the DIEP flaps, but no increase in fat necrosis. Conclusions This study demonstrates that the number of perforators does not impact the rate of flap survival. However, the rate of fat necrosis may be significantly higher in DIEP flaps based on a single perforator. Multiple perforators should be utilized if possible to decrease the risk of fat necrosis.

Improvement of Vegetation Cooling Effects in BioCAS for Better Estimation of Daily Maximum Temperature during Heat Waves - In Case of the Seoul Metropolitan Area - (식생냉각효과 적용을 통한 BioCAS의 폭염기간 일 최고기온 추정 개선 - 서울 및 수도권지역을 중심으로 -)

  • Lee, Hankyung;Yi, Chaeyeon;Kim, Kyu Rang;Cho, Changbum
    • Atmosphere
    • /
    • v.29 no.2
    • /
    • pp.131-147
    • /
    • 2019
  • On the urban scale, Micro-climate analysis models for urban scale have been developed to investigate the atmospheric characteristics in urban surface in detail and to predict the micro-climate change due to the changes in urban structure. BioCAS (Biometeorological Climate Impact Assessment System) is a system that combines such analysis models and has been implemented internally in the Korea Meteorological Administration. One of role in this system is the analysis of the health impact by heat waves in urban area. In this study, the vegetation cooling models A and B were developed and linked with BioCAS and evaluated by the temperature drop at the vegetation areas during ten selected heat-wave days. Smaller prediction errors were found as a result of applying the vegetation cooling models to the heat-wave days. In addition, it was found that the effects of the vegetation cooling models produced different results according to the distribution of vegetation area in land cover near each observation site - the improvement of the model performance on temperature analysis was different according to land use at each location. The model A was better fitted where the surrounding vegetation ratio was 50% or more, whereas the model B was better where the vegetation ratio was less than 50% (higher building and impervious areas). Through this study, it should be possible to select an appropriate vegetation cooling model according to its fraction coverage so that the temperature analysis around built-up areas would be improved.

Radiological Impact Assessment for Radioactive Concrete in Dismantling of the Medical Cyclotron (의료용 사이클로트론 해체 시 발생되는 방사화 콘크리트의 방사선학적 영향평가)

  • Jang, Donggun;Shin, Sanghwa
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.1
    • /
    • pp.73-80
    • /
    • 2019
  • Neutrons are generated by the nuclear reaction, which is absorbed into the concrete wall and causes the activation during cyclotron operation. The purpose of this study is to investigate the effect of neutron activation and radiative concrete on concrete type. This experiment used Monte Carlo simulation and RESRAD model. The results of the experiment showed that the higher the content of Fe in concrete, the greater the shielding rate. The effect of $^{56}Fe(n,\;2np)^{54}Mn$ reaction on workers is also increased. However, radioactive nuclides have low activity and have very low impact on workers. Radioactive concrete should be treated as general wastes with less than its self-disposal tolerance level, and it should be recycled to the surface such as road repair rather than landfill to minimize the effect of $^{14}C$.

Environmental Impact Assessment of Fish Cage Farms Using Benthic Polychaete Communities (저서 다모류군집을 이용한 어류가두리 양식장의 환경영향범위 평가)

  • Park, Sohyun;Kim, Sunyoung;Sim, Bo-Ram;Jung, Woo-Sung;Park, Se-Jin;Hong, Sok-Jin;Lee, Won-Chan;Yoon, Sang-Pil
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.55 no.5
    • /
    • pp.598-611
    • /
    • 2022
  • The aim of this study was to investigate the range of influence of aquaculture activities in fish cage farms located on the southern coast of Korea (Farm A and B in Hadong, Farm C in Tongyoung, and Farm D in Geoje) by analyzing the distribution and characteristics of polychaete communities. Farm A and B showed remarkably high aquaculture intensity, and as a result, the polychaete communities near the farms were heavily polluted. However, there was a difference in the polychaete communities at a distance greater than 30 m from farm A and B, which may be due to topographical differences. The effect of the aquaculture activity of Farm C was only observed below the farm, however, the influence of aquaculture activities Farm D was maintained over a relatively long distance. According to the results of this study, the effect of the fish cage culture was mainly influenced by factors related to the production of fish, such as the stocking amount and the amount of food supply. Moreover, the distance at which the influence of aquaculture activity was observed was found to be closely related to the topographical characteristics and flow velocity around the farms.

Actinobacteria Isolation from Metal Contaminated Soils for Assessment of their Metal Resistance and Plant Growth Promoting (PGP) Characteristics

  • Tekaya, Seifeddine Ben;Tipayno, Sherlyn;Chandrasekaran, Murugesan;Yim, Woo-Jong;Sa, Tong-Min
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.4
    • /
    • pp.593-601
    • /
    • 2012
  • Heavy metals and metalloids removal can be considered as one of the most important world challenges because of their toxicity and direct impact on human health. Many processes have been introduced but biological processes of remediation seem to offer the most suitable solution in terms of efficiency and low cost. Actinobacteria constitute one of the major microbial populations in soil, and this can be attributed to their adaptive morphological structure as well as their exceptional metabolic power. Among microbes, actinobacteria are morphologic intermediate between fungi and bacteria. Studies on microbial diversities in metal contaminated lands have shown that actinobacteria may constitute a dominantly active microbiota in addition to ${\alpha}$ Proteobacteria. Furthermore, isolation studies have shown metal removal mechanisms which are reminiscent of notable multiresistant strains, such as Cupriavidus metallidurans. Apart from members of genus Streptomyces, which produce more than 90% of commercialized antibiotics, and the nitrogen fixing Frankia, little attention has been given to other members of this phylum. This is because of difficult culture condition requirements and maintenance. In this review, we focused on specific isolation of actinobacteria and their potential applications in metal bioremediation and plant growth promotion.

Nutritional Management in Patients with Chronic Obstructive Pulmonary Disease (만성폐쇄성폐질환 환자의 영양관리)

  • Lee, Kwan-Ho
    • Journal of Yeungnam Medical Science
    • /
    • v.21 no.2
    • /
    • pp.133-142
    • /
    • 2004
  • Chronic obstructive pulmonary disease(COPD) is characterized by a not entirely reversible limitation in the airflow. An airflow limitation is progressive and associated with an abnormal inflammatory response of the lung to gases and harmful particles. In COPD, the weight loss is commonly observed and there is a negative impact on the respiratory as well as skeletal muscle function. The pathophysiological mechanisms that result in weight loss in COPD are not fully understood. However, the mechanisms of weight loss in COPD may be the result of an increased energy expenditure unbalanced by an adequate dietary intake. The commonly occurring weight loss and muscle wasting in COPD patients adversely affect the respiratory and peripheral muscle function, the exercise capacity, the health status, and even the survival rates. Therefore, it is very valuable to include management strategies that the increase energy balance in order to increase the weight and fat free mass. A Better understanding of the molecular and cellular pathological mechanisms of COPD can improve the many new directions for both the basic and clinical investigations. The Nutritional supply is an important components of a multidisciplinary pulmonary rehabilitation program. Future studies combining an exercise program, the role of anabolic steroids, nutritional individualization, a more targeted nutritional therapy, and the development of new drugs including anti-cytokines is needed for the effective management of COPD.

  • PDF

Exposure and human risk assessment of toxic heavy metals on abandoned metal mine areas

  • Lee Jin-Soo;Chon Hyo-Taek
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.515-517
    • /
    • 2003
  • In order to assess the risk of adverse health effects on human exposure to arsenic and heavy metals influenced by past mining activities, environmental geochemical surveys were undertaken in the abandoned metal mine areas (Dongil Au-Ag-Cu-Zn, Okdong Cu-Pb-Zn, Songcheon Au-Ag, Dongjung Au-Ag-Pb-Zn, Dokok Au-Ag-Cu and Hwacheon Au-Ag-Pb-Zn mines). Arsenic and other heavy metals were highly elevated in the tailings from the Dongil, the Songcheon and the Dongjung mines. High concentrations of heavy metals except As were also found in tailings from the Okdong, the Dokok and the Hwacheon mines. These significant concentrations can impact on soils and waters around the tailing dumps. Risk compounds deriving from mine sites either constitute a toxic risk or a carcinogenic risk. The hazard index (H.I.) of As in the Dongil, the Okdong, the Songcheon and the Hwacheon mine areas was higher value more than 1.0. In the Okdong and the Songcheon mine areas, H.I. value of Cd exceeded 1.0. These values of As and Cd were the highest in the Songcheon mine area. Therefore, toxic risks for As and Cd exist via exposure (ingestion) of contaminated soil, groundwater and rice grain in these mine areas. The cancer risk for As in stream or ground water used for drinking water from the Songcheon, the Dongil, the Okdong, the Dongjung and the Hwacheon mine areas was 3E-3, 8E-4, 7E-4, 2E-4 and 1E-4, respectively.

  • PDF

Dynamic Response Analysis of Caisson Structure by Acceleration Measurement (가속도 계측을 통한 항만시설용 케이슨 구조체의 동적응답 분석)

  • Lee, So-Young;Kim, Jeong-Tae;Kim, Heon-Tae;Park, Woo-Sun
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.1
    • /
    • pp.114-121
    • /
    • 2009
  • In this study, acceleration responses of caisson structures under various environmental conditions are experimentally examined as a basic study to develop the health assessment technique for harbor structures. To achieve the objective, three approaches are implemented. Firstly, a target caisson structure is selected and its small-scaled caisson is constructed in the laboratory. Secondly, a finite element model of the caisson is generated to identify dynamic responses of the baseline structure. Thirdly, experimental tests are performed on the caisson model to examine dynamic responses under various boundary conditions and impact locations. Four different boundary conditions, 'standing on concrete floor', 'standing on styrofoam block', 'standing on sand-mat' and 'hanging by crane', are considered and correlation coefficients of frequency response functions between four states are analyzed.

Cross-generational Effect of Bisphenol A on the Harpacticoid Copepod Tigriopus west: A Full Life Cycle Toxicity Test

  • Bang, Hyun Woo
    • Korean Journal of Environmental Biology
    • /
    • v.36 no.4
    • /
    • pp.456-462
    • /
    • 2018
  • The purpose of this study was to assess cross-generational effects of bisphenol A exposure in benthic copepods, Tigriopus west. Nauplii (<24 hours old) were exposed to graded concentrations of bisphenol A, and toxicity end-points such as survival, development, sex ratio, and fecundity were measured. $F_1$ generations were grown under innoxious conditions, and similarly assessed. Significant differences were observed in development of nauplii and copepodites, between exposed and non-exposed copepods; however, there were no differences in survival of nauplii or copepodites, sex ratio, or brooding rate in parental generation. In contrast, in the $F_1$ generation, there were significant differences between the control group and exposed group in survival and development of nauplii. Length, width, and biomass of parental and $F_1$ generations were reduced in the exposed group compared to the control group. In addition, some deformities, such as swelling of the prosome, abnormally shaped egg sac, and dwarfism were observed after exposure to bisphenol A. So, our study demonstrates that a cross-generation toxicity test and monitoring of morphological deformities in harpacticoid copepods, can be useful for development of potential bioindicators for environmental monitoring, and assessment of chemical impact.

The Impact of Movement Education Programs on the Empathy Ability of Disabled Children

  • Yun-Mi Min
    • International journal of advanced smart convergence
    • /
    • v.12 no.4
    • /
    • pp.277-285
    • /
    • 2023
  • The purpose of this paper is to understand and express emotions and experiences from the perspective of others through empathy, which is crucial for maintaining social relationships. The smooth formation of interpersonal relationships through the physical activity of children with disabilities holds significant meaning. Children with disabilities often lack opportunities for interaction with their peers compared to typical children, and the absence of effective communication methods poses difficulties in forming relationships. Therefore, this study aimed to investigate the effects of a movement education program on enhancing empathy in children with disabilities. The program was implemented for 12 weeks from April to June 2023, involving five children with disabilities. The movement education program comprised 12 topics, encompassing physical, emotional, and cognitive domains. Empathy was measured in two areas: cognitive empathy and emotional empathy. The results indicated improvement in both cognitive and emotional empathy after the program compared to the pre-assessment. The rate of progress varied depending on the type and severity of the disability, but overall, positive changes in the development of empathy were observed. Through this research, it is hoped that movement programs can be practically utilized as a valuable resource.