• Title/Summary/Keyword: headspace solid-phase microextraction(HS-SPME)

Search Result 40, Processing Time 0.024 seconds

Headspace-Solid Phase Microextraction (HS-SPME) Analysis of Korean Fermented Soybean Pastes

  • Lee, Seung-Joo
    • Food Science and Biotechnology
    • /
    • v.18 no.3
    • /
    • pp.700-705
    • /
    • 2009
  • In this study, the volatile compounds in 9 commercial fermented soybean pastes were extracted and analyzed by headspace-solid phase microextraction (HS-SPME) and gas chromatography-mass spectrometry (GC-MS), respectively. A total of 63 volatile components, including 21 esters, 7 alcohols, 7 acids, 8 pyrazines, 5 volatile phenols, 3 ketones, 6 aldehydes, and 6 miscellaneous compounds, were identified. Esters, acids, and pyrazines were the largest groups among the quantified volatiles. About 50% of the total quantified volatile material was contributed by 5 compounds in 9 soybean paste samples; ethyl hexadecanoate, acetic acid, butanoic acid, 2/3-methyl butanoic acid, and tetramethyl-pyrazine. Three samples (CJW, SIN, and HAE) made by Aspergillus oryzae inoculation showed similar volatile patterns as shown in principal component analyses to GC-MS data sets, which showed higher levels in ethyl esters and 2-methoxy-4-vinylphenol. Traditional fermented soybean pastes showed overall higher levels in pyrazines and acids contents.

Determination of Volatile Fatty Acids in Aqueous Samples by HS-SPME with In-Fiber Derivatization (Fiber내 유도체화/HS-SPME를 이용한 수용액 시료 중 휘발성 지방산의 분석)

  • Ahn, Yun Gyong;Lee, Jee Yeon;Kim, Jeehyeong;Hong, Jongki
    • Analytical Science and Technology
    • /
    • v.16 no.6
    • /
    • pp.458-465
    • /
    • 2003
  • The HS (headspace)-SPME (Solid phase microextraction) as rapid and simple method was performed for the determination of volatile fatty acids (VFAs) from the aqueous samples. In-fiber derivatization of VFAs with 1-Pyrenyldiazomethane (PDAM) was applied to improve their sensitivity of detection. In SPME procedure, typical parameters such as effects of solution pH, and salting out reagent and ultrasonication were investigated to improve the extraction efficiency. Based on the developed method, VFAs in wastewater samples were determined by gas chromatography / mass spectrometry-selected ion monitoring (GC/MS-SIM) mode.

Determination of VOC in aqueous samples by the combination of headspace (HS) and solid-phase microextraction (SPME) (HS-SPME 방식에 기초한 물 중 VOC 성분의 분석기법에 대한 연구: 3가지 실험 조건의 변화와 분석감도의 관계)

  • Park, Shin-Young;Kim, Ki-Hyun;Yang, H.S.;Ha, Joo-Young;Lee, Ki-Han;Ahn, Ji-Won
    • Analytical Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.93-101
    • /
    • 2008
  • The application of solid phase microextraction (SPME) is generally conducted by directly immersing the fiber into the liquid sample or by exposing the fiber in the head space (HS). The extraction temperature, the time of incubation, and application of stirring are often designated to be the most important parameters for achieving the best extraction efficiencies of HS-SPME analysis. In this study, relative importance of these three analytical parameters involved in the HS-SPME method is evaluated using a polydimethylsiloxane/carboxen (PDMS/CAR) fiber. To optimize its operation conditions the competing relationships between different parameters were investigated by comparing the extraction efficiency based on the combination of three parameters and two contracting conditions: (1) heating the sample at 30 vs. 50 C, (2) exposing samples at two durations of 10 vs. 30 min, and (3) application of stirring vs. no stirring. According to our analysis among 8 combination types of HS-SPME method, an extraction condition termed as S50-30 condition ((1) 1200 rpm stirring, (2) $50^{\circ}C$ exposure temp, and (3) 30 min exposure duration) showed maximum recovery rate of 45.5~68.5% relative to an arbitrary reference of direct GC injection. According to this study, the employment of stirring is the most crucial factor to improve extraction efficiency in the application of HS-SPME.

The Analysis of Airborne Trimethylamine Using a Headspace (HS)-SPME Method (헤드스페이스-SPME 방법을 이용한 트리메틸아민의 분석방법 연구)

  • Ahn, Ji-Won;Kim, Ki-Hyun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.3
    • /
    • pp.357-366
    • /
    • 2008
  • In this study, the analytical performance of trimethylamine (TMA) were investigated with respect to headspace-solid phase microextraction (HS-SPME) method. In order to induce the elution of aqueous TMA to headspace, NaOH was added as a decomposition reagent to aqueous TMA standard. By controlling the combination of three major variables for TMA extraction, the extent of extraction was compared between the two contrasting conditions for each variable (i.e., reaction time (long (L) vs short (S)), exposure temperature (30 vs $50^{\circ}C$), and exposure time (10 vs 30 min)). The results of this comparative analysis showed that the extraction efficiency for all eight types of HS-SPME combinations decreased on the order: L-30-30>L-50-10>L-30-10>L-50-30>S-30-30>S-50-30>S-50-10>S-30-10. The effect of reaction time appeared to exert significant influences on the relative recovery rate of HS-SPME at 90% confidence level. However, the effects of exposure temperature or exposure time were not so significant as reaction time. When the recovery rate of HS-SPME is compared against the direct injection of liquid standard into GC injector, it recorded as 2%. According to this comparative study, the reaction conditions for HS-SPME application can exert significant influences on the analysis of TMA.

Comparative Analyses of the Flavors from Hallabong (Citrus sphaerocarpa) with Lemon, Orange and Grapefruit by SPTE and HS-SPME Combined with GC-MS

  • Yoo, Zoo-Won;Kim, Nam-Sun;Lee, Dong-Sun
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.2
    • /
    • pp.271-279
    • /
    • 2004
  • The aroma component of Hallabong peel has been characterized by GC-MS with two different extraction techniques: solid-phase trapping solvent extraction (SPTE) and headspace solid-phase microextraction (HSSPME). Aroma components emitted from Hallabong peel were compared with those of other citrus varieties: lemon, orange and grapefruit by SPTE and GC-MS. d-Limonene (96.98%) in Hallabong was the main component, and relatively higher peaks of cis- ${\beta}$-ocimene, valencene and -farnesene were observed. Other volatile aromas, such as sabinene, isothujol and ${\delta}$-elemene were observed as small peaks. Also, principal components analysis was employed to distinguish citrus aromas based on their chromatographic data. For HSSPME, the fiber efficiency was evaluated by comparing the partition coefficient ($K_{gs}$Kgs) between the HS gaseous phase and HS-SPME fiber coating, and the relative concentration factors (CF) of the five characteristic compounds of the four citrus varieties. 50/30 ${\mu}$m DVB/CAR/PDMS fiber was verified as the best choice among the four fibers evaluated for all the samples.

Volatile Metabolic Markers for Monitoring Pectobacterium carotovorum subsp. carotovorum Using Headspace Solid-Phase Microextraction Coupled with Gas Chromatography-Mass Spectrometry

  • Yang, Ji-Su;Lee, Hae-Won;Song, Hyeyeon;Ha, Ji-Hyoung
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.1
    • /
    • pp.70-78
    • /
    • 2021
  • Identifying the extracellular metabolites of microorganisms in fresh vegetables is industrially useful for assessing the quality of processed foods. Pectobacterium carotovorum subsp. carotovorum (PCC) is a plant pathogenic bacterium that causes soft rot disease in cabbages. This microbial species in plant tissues can emit specific volatile molecules with odors that are characteristic of the host cell tissues and PCC species. In this study, we used headspace solid-phase microextraction followed by gas chromatography coupled with mass spectrometry (HS-SPME-GC-MS) to identify volatile compounds (VCs) in PCC-inoculated cabbage at different storage temperatures. HS-SPME-GC-MS allowed for recognition of extracellular metabolites in PCC-infected cabbages by identifying specific volatile metabolic markers. We identified 4-ethyl-5-methylthiazole and 3-butenyl isothiocyanate as markers of fresh cabbages, whereas 2,3-butanediol and ethyl acetate were identified as markers of soft rot in PCC-infected cabbages. These analytical results demonstrate a suitable approach for establishing non-destructive plant pathogen-diagnosis techniques as alternatives to standard methods, within the framework of developing rapid and efficient analytical techniques for monitoring plant-borne bacterial pathogens. Moreover, our techniques could have promising applications in managing the freshness and quality control of cabbages.

Analysis of Haloacetonitriles in Drinking Water Using Headspace-SPME Technique with GC-MS (Handspace Solid Phase Microextraction 방법에 의한 HANs 분석에 관한 연구)

  • Cho, Deok-Hee
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.5
    • /
    • pp.628-637
    • /
    • 2004
  • In many drinking water treatment plants, chlorination process is one of the main techniques used for the disinfection of water. This disinfecting treatment leads to the formation of disinfection by-products (DBPs) such as haloacetonitriles (HANs), trihalomethanes (THMs), haloacetic acids (HAAs). In this study, headspace-solid phase microextraction (HS- SPME) technique was applied for the analysis of HANs in drinking water. The effects of experimental parameters such as selection of SPME fiber, the addition of salts, magnetic stirring, extraction temperature, extraction time and desorption time on the analysis were investigated. Analytical parameters such as linearity, repeatability and detection limits were also evaluated. The $50/30{\mu}m$-divinylbenzene/carboxen/polydimethylsiloxane fiber, extraction time of 30 minutes, extraction temperature of $20^{\circ}C$ and desorption time of 1 minute at $260^{\circ}C$ were the optimal experimental conditions for the analysis of HANs. The correlation coefficients ($r^2$) for HANs was 0.9979~0.9991, respectively. The relative standard deviations (%RSD) for HANs was 2.3~7.6%, respectively. Detection limits (LDs) for HANs was $0.01{\sim}0.5{\mu}g/L$, respectively.

Quantification of Volatile Organic Compounds in Gas Sample Using Headspace Solid-Phase Microextraction (고상 미세 추출법을 이용한 가스시료 중 휘발성유기화합물의 정량 분석)

  • Kim, Jae Hyuck;Kim, Hyunook
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.12
    • /
    • pp.906-917
    • /
    • 2013
  • The purpose of this study is to quantify volatile organic compounds (VOCs) in gas sample using headspace solid-phase microextraction (HS-SPME) coupled to GC analysis. The optimal HS-SPME conditions was CAR/PDMS fiber and 30 min absorprion time for the analysis of various VOCs. In optimal conditions, 80 VOCs could be detected within 1 ppbv and even less than 0.0005 ppbv especially in the case of BTEX. However, fiber reproducibility on adsorption efficiency was 1~9.2% (between the same fiber) and 5.9~13.5% (between the other fiber). We successfully determined 35 VOCs in landfill gas with this method and found that VOCs of high concentration are emitting from vent pipe of closed/open landfill site under the HS-SPME conditions. This method may apply to VOCs/odor determination from various atmospheric environmental samples as well as landfills.

Composition and Cytotoxicity of Essential Oil from Korean rhododendron (Rhododendon mucronulatum Turcz. var. ciliatum Nakai) (털진달래(Rhododendon mucronulatum Turcz. var. ciliatum Nakai) 정유의 성분분석과 독성평가)

  • Park, Yu-Hwa;Kim, Song-Mun
    • Applied Biological Chemistry
    • /
    • v.51 no.3
    • /
    • pp.233-237
    • /
    • 2008
  • The essential oil was obtained from the aerial part of Rhododendon mucronulatum Turcz. var. ciliatum Nakai by steam distillation, samples were collected by headspace (HS) and solid-phase microextraction (SPME) methods, and the compositions of the oil were analyzed by gas chromatography-mass spectrometry (GC-MS). Nineteen constituents were identified from the essential oil: 15 carbohydrates, 3 alcohols, and 1 acetates. Major constituents were 2-${\beta}$-pinene (16.1%), camphene (11.9%), ${\delta}$-3-carene (11.4%), d,l-limonene (9.5%), and ${\gamma}$-terpinene (9.5%). By SPME extraction, seventeen constituents were identified: 13 hydrocarbons, 1 alcohol, 1 nitrogen-containing compound, 1 acetate, and 1 amine. Major constituents of the SPME-extracted sample were cam phene (19.6%), 2-${\beta}$-pinene (18.0%), ${\delta}$-3-carene (17.4%), trimethyl hydrazine (9.7%), ${\gamma}$-terpinene (8.5%), and d,l-limonene (5.5%). By HS extraction, thirteen constituents were identified: 11 hydrocarbons, 1 alcohol, and 1 nitrogen-containing compound. Major constituents of the HS-extracted sample were camphene (25.8%), ${\delta}$-3-carene (24.8%), 2-${\beta}$-pinene (20.2%), d,l-limonene (5.4%), tricyclene (5.1%) and trimethyl hydrazine (4.6%). The fragrance of the essential oil was coniferous, balsamic, and woody, and the $IC_{50}$ value of the essential oil was 0.030 ${\mu}g/mg$ in MTT assay using UaCaT keratinocyte cell line.

Determination of the presence of benzene in vitamin drinks using headspace - solid phase microextraction and gas chromatography - mass spectrometry (Headspace Solid Phase Microextraction-Gas Chromatography/Mass Spectrometry를 이용한 비타민드링크 제품 중 Benzene의 미량분석)

  • Kim, Jong-Hun;Lee, Kyung-Min
    • Analytical Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.237-245
    • /
    • 2007
  • The presence of benzene in 31 products of vitamin drinks purchased from 20 retail outlets was determined using headspace solid phase microextraction (HS-SPME) and gas chromatography-mass spectrometry (GC-MS). The sample (25 ml) was stirred at 1200 rpm for 4 min using a magnetic bar with a $100{\mu}m$ SPME fiber as an adsorbent for benzene which was then desorbed from the fiber for 1 min in the GC injector. Quantitation was achieved using the standard addition method. The limit of detection was determined as 0.56 ng/ml and over a concentration range 0-40 ng/ml the coefficient of correlation was greater than 0.999. The concentration of benzene in the drinks examined was in the range not detectable to 47.35 ng/ml. Benzene was detected in 15 of the drinks with concentration in 5 of them greater than 10 ng/ml which is the limit set for the presence of benzene in the Drinking Water Regulations. The concentrations of benzene in the 5 drinks which exceeded the limit of 10 ng/ml were 16.99, 35.14, 16.03, 47.35 and 14.28 ng/ml respectively.