Browse > Article
http://dx.doi.org/10.4014/jmb.2009.09028

Volatile Metabolic Markers for Monitoring Pectobacterium carotovorum subsp. carotovorum Using Headspace Solid-Phase Microextraction Coupled with Gas Chromatography-Mass Spectrometry  

Yang, Ji-Su (Hygienic Safety and Analysis Center, World Institute of Kimchi)
Lee, Hae-Won (Hygienic Safety and Analysis Center, World Institute of Kimchi)
Song, Hyeyeon (Hygienic Safety and Analysis Center, World Institute of Kimchi)
Ha, Ji-Hyoung (Hygienic Safety and Analysis Center, World Institute of Kimchi)
Publication Information
Journal of Microbiology and Biotechnology / v.31, no.1, 2021 , pp. 70-78 More about this Journal
Abstract
Identifying the extracellular metabolites of microorganisms in fresh vegetables is industrially useful for assessing the quality of processed foods. Pectobacterium carotovorum subsp. carotovorum (PCC) is a plant pathogenic bacterium that causes soft rot disease in cabbages. This microbial species in plant tissues can emit specific volatile molecules with odors that are characteristic of the host cell tissues and PCC species. In this study, we used headspace solid-phase microextraction followed by gas chromatography coupled with mass spectrometry (HS-SPME-GC-MS) to identify volatile compounds (VCs) in PCC-inoculated cabbage at different storage temperatures. HS-SPME-GC-MS allowed for recognition of extracellular metabolites in PCC-infected cabbages by identifying specific volatile metabolic markers. We identified 4-ethyl-5-methylthiazole and 3-butenyl isothiocyanate as markers of fresh cabbages, whereas 2,3-butanediol and ethyl acetate were identified as markers of soft rot in PCC-infected cabbages. These analytical results demonstrate a suitable approach for establishing non-destructive plant pathogen-diagnosis techniques as alternatives to standard methods, within the framework of developing rapid and efficient analytical techniques for monitoring plant-borne bacterial pathogens. Moreover, our techniques could have promising applications in managing the freshness and quality control of cabbages.
Keywords
Cabbage; Pectobacterium; soft rot; solid-phase microextraction; volatile metabolic marker;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Zheng M, Shi J, Shi J, Wang Q, Li Y. 2013. Antimicrobial effects of volatiles produced by two antagonistic Bacillus strains on the anthracnose pathogen in postharvest mangos. Biol. Control. 65: 200-206.   DOI
2 Lui L, Vikram A, Hamzehzarghani H, Kushalappa AC. 2005. Discrimination of three fungal diseases of potato tubers based on volatile metabolic profiles developed using GC/MS. Potato Res. 48: 85-96.   DOI
3 Laothawornkitkul J, Jansen RMC, Smid HM, Bouwmeester HJ, Muller J, van Bruggen AHC. 2010. Volatile organic compounds as a diagnostic marker of late blight infected potato plants: a pilot study. Crop Prot. 29: 872-878.   DOI
4 Toth IK, Bell KS, Holeva MC, Birch PR. 2003. Soft rot Erwiniae: from genes to genomes. Mol. Plant Pathol. 4: 17-30.   DOI
5 Par R. Davidsson, Tarja Kariola, Outi Niemi, Tapio Palva. 2013. Pathogenicity of and plant immunity to soft rot pectobacteria. Front. Plant Sci. 4: 191.   DOI
6 Blasioli S, Biondi E, Samudrala D, Spinelli F, Cellini A, Bertaccini A, 2014. Identification of volatile markers in potato brown rot and ring rot by combined GC-MS and PTR-MS techniques: study on in vitro and in vivo samples. J. Agric. Food Chem. 62: 337-347.   DOI
7 Turner AP, Magan N. 2004. Electronic noses and disease diagnostics. Nat. Rev. Microbiol. 2: 161-166.   DOI
8 Li C, Schmidt NE, Gitaitis R. 2011. Detection of onion postharvest diseases by analyses of headspace volatiles using a gas sensor array and GC-MS. LWT Food Sci. Technol. 44: 1019-1025.   DOI
9 Rutolo MF, Iliescu D, Clarkson JP, Covington JA. 2016. Early identification of potato storage disease using an array of metal-oxide based gas sensors. Postharvest Biol. Technol. 116: 50-58.   DOI
10 Concina I, Falasconi M, Gobbi E, Bianchi F, Musci M, Mattarozzi M, et al. 2009. Early detection of microbial contamination in processed tomatoes by electronic nose. Food Control. 20: 873-880.   DOI
11 Balasubramanian S, Panigrahi S, Kottapalli B, Wolf-Hall CE. 2007. Evaluation of an artificial olfactory system for grain quality discrimination. LWT Food Sci. Technol. 40: 1815-1825.   DOI
12 Cecchi L, Ieri F, Vignolini P, Mulinacci N, Romani A. 2020. Characterization of volatile and flavonoid composition of different cuts of dried onion (Allium cepa L.) by HS-SPME-GC-MS, HS-SPME-GC×GC-TOF and HPLC-DAD. Molecules 25: 408.   DOI
13 Kailemia MJ, Park M, Kaplan DA, Venot A, Boons GJ, Li L, et al. 2014. High-field asymmetric-waveform ion mobility spectrometry and electron detachment dissociation of isobaric mixtures of glycosaminoglycans. J. Am. Soc. Mass Spectrom. 25: 258-268.   DOI
14 Marquez-Villavicencio MDP, Weber B, Witherell RA, Willis DK, Charkowski AO. 2011. The 3-hydroxy-2-butanone pathway is required for Pectobacterium carotovorum pathogenesis. PLoS One 6: e22974.   DOI
15 Arthur CL, Pawliszyn J. 1990. Solid phase microextraction with thermal desorption using fused silica optical fibers. Anal. Chem. 62: 2145-2148.   DOI
16 Li X, Xu Z, Lu X, Yang X, Yin P, Kong H, et al. 2009. Comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry for metabonomics: biomarker discovery for diabetes mellitus. Anal. Chim. Acta 633: 257-262.   DOI
17 Effantin G, Rivasseau C, Gromova M, Bligny R, Hugouvieux-Cotte-Pattat N. 2011. Massive production of butanediol during plant infection by phytopathogenic bacteria of the genera Dickeya and Pectobacterium. Mol. Microbiol. 82: 988-997.   DOI
18 Mateo JJ, Jimenez M, Pastor A, Huerta T. 2001. Yeast starter cultures affecting wine fermentation and volatiles. Food Res. Int. 34: 307-314.   DOI
19 Radvanyi D, Gere A, Jokai Z, Fodor P. 2015. Rapid evaluation technique to differentiate mushroom disease-related moulds by detecting microbial volatile organic compounds using HS-SPME-GC-MS. Anal. Bioanal. Chem. 407: 537-545.   DOI
20 Kanchiswamy CN, Malnoy M, Maffei ME. 2015. Chemical diversity of microbial volatiles and their potential for plant growth and productivity. Front. Plant Sci. 6: 151.   DOI
21 Bauer K, Garbe D, Surburg H. 2001. Common fragrance and flavor materials preparation, properties and uses, 4th Ed. Weinheim, Germany, Wiley-VCH.
22 Levey DJ. 2004. The evolutionary ecology of ethanol production and alcoholism. Integr. Comp. Biol. 44: 284-289.   DOI
23 Marsili RT. 1999. SPME- MS- MVA as an electronic nose for the study of off-flavors in milk. J. Agric. Food Chem. 47: 648-654.   DOI
24 Vivaldo G, Masi E, Taiti C, Caldarelli G, Mancuso S. 2017. The network of plants volatile organic compounds. Sci. Rep. 7: 11050.   DOI
25 Morath SU, Hung R, Bennett JW. 2012. Fungal volatile organic compounds: a review with emphasis on their biotechnological potential. Fungal Biol. Rev. 26: 73-83.   DOI
26 Strobel G. 2011. Muscodor species-endophytes with biological promise. Phytochem. Rev. 10: 165-172.   DOI
27 Jeong SG, Lee JY, Yoon SR, Moon EW, Ha JH. 2019. A quantitative PCR based method using propidium monoazide for specific and sensitive detection of Pectobacterium carotovorum ssp. carotovorum in kimchi cabbage (Brassica rapa L. subsp. pekinensis). LWT 113: 108327.   DOI
28 Vas G, Vekey K. 2004. Solid-phase microextraction: a powerful sample preparation tool prior to mass spectrometric analysis. J. Mass Spectrom. 39: 233-254.   DOI
29 Hwang YS, Lee HW, Chang JY, Seo HY. 2018. Characterization of Kimchi flavor with preconcentration by headspace solid-phase microextraction and stir bar sorptive extraction and analysis by gas chromatography-mass spectrometry. Anal. Lett. 52: 1247-1257.   DOI
30 Portier P , Pedron J , Taghouti1 G, Fischer-Le SM, Caullireau E , Bertrand C, et al. 2019. Elevation of Pectobacterium carotovorum subsp. odoriferum to species level as Pectobacterium odoriferum sp. nov., proposal of Pectobacterium brasiliense sp. nov. and Pectobacterium actinidiae sp. nov., emended description of Pectobacterium carotovorum and description of Pectobacterium versatile sp. nov., isolated from streams and symptoms on diverse plants. Int. J. Syst. Evol. Microbiol. 69: 3207-3216.   DOI
31 Chong J, Soufan O, Li C, Caraus I, Li S, Bourque G, et al. 2018. MetaboAnalyst 4.0: towards more transparent and integrative metabolomics analysis. Nucleic Acids Res. 46: W486-W494.   DOI
32 Bhat KA, Masoodi SD, Bhat NA, Ahmad M, Zargar MY, Mir SA, et al. 2010. Studies on the effect of temperature on the development of soft rot of cabbage (Brassica oleracea var. capitata) caused by Erwiniacarotovora sub sp. Carotovora. J. Phytol. 2: 64-67.
33 Chen T, Cao Y, Zhang Y, Liu J, Bao Y, Wang C, et al. 2013. Random forest in clinical metabolomics for phenotypic discrimination and biomarker selection. Evid. Based Complement. Alternat. Med. 2013: 298183.
34 Agrios GN. 2005. Bacterial soft rots, pp. 656. In S. Dieg (Ed.), Plant Pathology, 5th Ed. Academic press, London.
35 Smadja B, Latour X, Trigui S, Burini JF, Chevalier S, Orange N. 2004. Thermodependence of growth and enzymatic activities implicated in pathogenicity of two Erwinia carotovora subspecies (Pectobacterium spp.). Can. J. Microbiol. 50: 19-27.   DOI
36 Perombelon MCM, Salmond GPC. 1995. Bacterial soft rots, pp. 1-20. In Singh US, Singh, Singh RP, Kohmoto K (eds.), Pathogenesis and host specificity in plant disease. Vol. I. Pergamon Press Ltd., Oxford, UK.
37 Molina JJ, Harrison MD. 1977. The role of Erwinia carotovora in the epidemiology of potato blackleg. I. Relationship of E. carotovora var. carotovora and E. carotovora var. atrospetica to potato blackleg in Colorado. Am. Potato J. 54: 587-591.   DOI
38 Heikinheimo R, Flego D, Pirhonen M, Karlsson M-B, Eriksson A, Mae A, et al. 1995. Characterization of a novel pectate lyase from Erwinia carotovora subsp. carotovora. Mol. Plant-Microbe Interact. 8: 207-217.   DOI
39 Li Q, Ning P, Zheng L, Huang J, Li G, Hsiang T. 2012. Effects of volatile substances of Streptomyces globisporus JK-1 on control of Botrytis cinerea on tomato fruit. Biol. Control. 61: 113-120.   DOI