• Title/Summary/Keyword: head-on impact

Search Result 437, Processing Time 0.027 seconds

The Impact of Object Density on Motion Simulation in Virtual Space (가상공간에서 오브젝트의 밀도가 이동시뮬레이션에 미치는 영향)

  • Yoong, Hayoung;Koo, Jihun
    • Journal of Korea Game Society
    • /
    • v.17 no.4
    • /
    • pp.55-62
    • /
    • 2017
  • In this study, motion simulation of Walk-through was evaluated with HMD(Head Mounted Display). More Specifically, we examined the changes of the degree of object density placed around virtual space on psychological moving distance, moving speed, and moving time. The results were as follows. First, the difference between the experimental conditions(low density, Medium density, High density) was significant. Second, as the density of the surrounding objects increased, the average point of moving time, moving speed, and moving distance rose compared to the basic conditions. Third, it was found that the surrounding objects improved the sense of time, speed and distance in motion simulation in virtual space.

Effects of Active Vibration Exercise on Neck Pain, Disability Index, and Muscle Activity of Patients with Forward Head Posture

  • Kim, Yong Nam;Lee, Dong Kyu
    • The Journal of Korean Physical Therapy
    • /
    • v.30 no.6
    • /
    • pp.218-223
    • /
    • 2018
  • Purpose: The purpose of this study was to evaluate the impact of active vibration exercise on the neck pain, disability index, and muscle activity of patients with forward head posture. Methods: A total of 24 patients were randomly assigned to an experimental group or a control group (n=12 each). The experimental group performed active vibration exercise using a flexi-bar for 20 minutes a day, five times a week for four weeks. The study measured patient neck pain using a visual analog scale, neck pain related disability using the neck disability index, and muscle activity using electromyography. Results: The intragroup comparison showed significant differences in the visual analog scale score, neck disability index score and upper trapezius, lower trapezius and serratus anterior muscle activity values among patients in the experimental group. The intergroup comparison showed that differences in the visual analog scale score, neck disability index score and upper trapezius, lower trapezius and serratus anterior muscle activity values in the control group. Conclusion: This study showed that active vibration exercise was effective in improving the neck pain, disability index, and muscle activity of patients with forward head posture.

Prevalence of Peripheral Vestibular Impairment in Adults with Human Immunodeficiency Virus

  • Millar, Alison;Joubert, Karin;Naude, Alida
    • Korean Journal of Audiology
    • /
    • v.25 no.1
    • /
    • pp.36-42
    • /
    • 2021
  • Background and Objectives: Globally, the human immunodeficiency virus (HIV) is responsible for one of the most serious pandemics to date. The vulnerability of the vestibular system in individuals with HIV has been confirmed, and central vestibular impairments have been frequently reported. However, there are disagreements on the impact of HIV on peripheral vestibular function. Thus, the current study aimed to determine the prevalence of peripheral vestibular impairment, specifically related to the semi-circular canals (SCCs), in HIV-positive individuals receiving antiretroviral (ARV) treatment. Subjects and Methods: A total of 92 adults between the ages of 18 and 50 years (divided into two groups) participated in the study. The first group comprised HIV-positive individuals receiving ARV treatment (n1=60), and the second group comprised HIV-negative participants (n2=32). The video head impulse test was used to conduct the head impulse paradigm (HIMP). Results: Bilateral normal HIMP results were obtained in 95% of the HIV-positive participants and all HIV-negative participants. The gain of the left posterior SCCs was significantly lower in the HIV-positive group, while the gains of all other canals between the two groups were comparable. Conclusions: The prevalence of peripheral vestibular impairment in the HIV-positive group was not significantly different from that of the HIV-negative group. The reduced prevalence in the current study may be attributed to participant characteristics, the test battery employed, and the central compensation of the vestibular dysfunctions at the later stages of infection.

Prevalence of Peripheral Vestibular Impairment in Adults with Human Immunodeficiency Virus

  • Millar, Alison;Joubert, Karin;Naude, Alida
    • Journal of Audiology & Otology
    • /
    • v.25 no.1
    • /
    • pp.36-42
    • /
    • 2021
  • Background and Objectives: Globally, the human immunodeficiency virus (HIV) is responsible for one of the most serious pandemics to date. The vulnerability of the vestibular system in individuals with HIV has been confirmed, and central vestibular impairments have been frequently reported. However, there are disagreements on the impact of HIV on peripheral vestibular function. Thus, the current study aimed to determine the prevalence of peripheral vestibular impairment, specifically related to the semi-circular canals (SCCs), in HIV-positive individuals receiving antiretroviral (ARV) treatment. Subjects and Methods: A total of 92 adults between the ages of 18 and 50 years (divided into two groups) participated in the study. The first group comprised HIV-positive individuals receiving ARV treatment (n1=60), and the second group comprised HIV-negative participants (n2=32). The video head impulse test was used to conduct the head impulse paradigm (HIMP). Results: Bilateral normal HIMP results were obtained in 95% of the HIV-positive participants and all HIV-negative participants. The gain of the left posterior SCCs was significantly lower in the HIV-positive group, while the gains of all other canals between the two groups were comparable. Conclusions: The prevalence of peripheral vestibular impairment in the HIV-positive group was not significantly different from that of the HIV-negative group. The reduced prevalence in the current study may be attributed to participant characteristics, the test battery employed, and the central compensation of the vestibular dysfunctions at the later stages of infection.

A Safety Assessment on Light Weight Wheelchair Occupant in Frontal Crash (경량 휠체어 탑승자의 차량 전방충돌시 안전성 평가)

  • 김성민;김성재;강태건
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.1
    • /
    • pp.15-21
    • /
    • 2003
  • In this study, for a safetv assessment of light weight wheelchair occupant in frontal crash, we tested a dynamic sled impact test. we carried out total 6 times test and impact speed was 20g/48 km/h. By using Hybrid III 50%ile male dummy, head injury criteria(HIC), neck flexion moment, neck axial tension force, neck shear force. chest acceleration, head, wheelchair and knee excursion were measured, we evaluated light weight wheelchair occupant safety by motion criteria(MC) which proposed in SAE J2249 and combined injury criteria(CIC) which is a voluntary standard(GM-IARV) of General Motors Co.. when we assumed that the maximum injury value in frontal crash was 100%, the result of motion criteria(MC) of wheelchair occupant was 52%, occupant upper body injury index(CIC) was 60.1%.

A Kinematical Characteristic Analysis of a Iron fade-shot with a Golf Swills (아이언 페이드샷의 운동학적 특성 분석)

  • Lee, Kyung-Il;Oh, Jong-Sun;Chung, Jin-Young
    • Korean Journal of Applied Biomechanics
    • /
    • v.19 no.2
    • /
    • pp.311-322
    • /
    • 2009
  • Using the 3-D analysis, this study winpared and analyzed the 'fade-shot swing' which is one of the golf technique. The subjects of this study were 3 male pro golfers they experimented with only a 7 iron. The purpose was to enhance their performance by producing the important kinematical parameters, finding out the features in them and providing the data to a coach and players. As a result, the position of the club head showed from the outside orbit to the inside orbit. When position of the center of mass moved backwards, the probability of the failure of the fade-shot increased. Cocking angle had an effect on easing the wrist for a smooth follow-through after the impact. It showed that the changes in the shoulder movement was made first and followed by the waist. The hip joint angular velocity achieved a smooth fade-shot motion due to the hitting delay also the velocity of the club-head was faster when uncocking was released at the time of impact.

Analysis of control rod driving mechanism nozzle rupture with loss of safety injection at the ATLAS experimental facility using MARS-KS and TRACE

  • Hyunjoon Jeong;Taewan Kim
    • Nuclear Engineering and Technology
    • /
    • v.56 no.6
    • /
    • pp.2002-2010
    • /
    • 2024
  • Korea Atomic Energy Research Institute (KAERI) has operated an integral effect test facility, the Advanced Thermal-Hydraulic Test Loop for Accident Simulation (ATLAS), with reference to the APR1400 (Advanced Power Reactor 1400) for tests for transient and design basis accidents simulation. A test for a loss of coolant accident (LOCA) at the top of the reactor pressure vessel (RPV) had been conducted at ATLAS to address the impact of the loss of safety injections (LSI) and to evaluate accident management (AM) actions during the postulated accident. The experimental data has been utilized to validate system analysis codes within a framework of the domestic standard problem program organized by KAERI in collaboration with Korea Institute of Nuclear Safety. In this study, the test has been analyzed by using thermal-hydraulic system analysis codes, MARS-KS 1.5 and TRACE 5.0 Patch 6, and a comparative analysis with experimental and calculation results has been performed. The main objective of this study is the investigation of the thermal-hydraulic phenomena during a small break LOCA at the RPV upper head with the LSI as well as the predictability of the system analysis codes after the AM actions during the test. The results from both codes reveal that overall physical behaviors during the accident are predicted by the codes, appropriately, including the excursion of the peak cladding temperature because of the LSI. It is also confirmed that the core integrity is maintained with the proposed AM action. Considering the break location, a sensitivity analysis for the nodalization of the upper head has been conducted. The sensitivity analysis indicates that the nodalization gave a significant impact on the analysis result. The result emphasizes the importance of the nodalization which should be performed with a consideration of the physical phenomena occurs during the transient.

FEM Analysis of the Effects of Mouth guard material properties on the Head and Brain under Mandibular Impact (구강보호장치의 재료적인 특성이 하악골 충격 시악골 및 두부에 미치는 영향에 관한 유한요소분석)

  • Kang, Nam-Hyun;Kim, Hyung-Sub;Woo, Yi-Hyung;Choi, Dae-Gyun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.46 no.4
    • /
    • pp.325-334
    • /
    • 2008
  • Statement of problem & Purpose: The purpose of this study was to investigate the effect of a mouth guard material properties on the skull and brain when they were under impact loads on mandible. Material and methods: Two customized mouth protectors having different material propeerst ieach other were made for a female Korean who had no history of brain trauma, no cerebral diseases, nomal occlusion and natural dentition. The 3D finite element model of human skull and brain scanned by means of computed tomography was constructed. The FEM model of head was composed of 407,825 elements and 82,138 nodes, including skull, brain, maxilla, mandible, articular disc, teeth and mouth guard. The stress concentrations on maxillary teeth, maxilla and skull with two mouth guards were evaluated under oblique impact load of 800N onto mandibular 3 loading points for 0.1sec. And the brain relative displacement was compared in two different mouth guard materials under same condition. Result and Conclusion: The results were as follows; 1. In comparison of von Mises stress on maxillary teeth, a soft mouth guard material had significantly lower stress values on measuring point than a hard mouth protector materials (P < .05). 2. In comparison of von Mises stress on maxilla and skull, A soft mouth protector material had significantly lower stress values on measuring point than a hard mouth protector materials (P < .05). 3. For impact loads on mandible, there were more stress concentrated area on maxilla and skull with hard mouth guard than soft with mouth protector. 4. For impact loads on mandible, brain relative displacement had little relation with mouth guard material properties. In results of this study, soft mouth guard materials were superior to hard mouth guard materials for mandible impact loads for prevention of sports injuries. Although the results of this study were not enough to figure out the roles of needed mouth guard material properties for a human head, we got some knowledge of the pattern about stress concentration and distribution on maxilla and skull for impact loads with soft or hard mouth protector. More studies are needed to substantiate the relationship between the mouth guard materials and sports injuries.

An Analysis of X-Factor, Triple X-Factor, and the Center of Pressure (COP) according to the Feel of the Golf Driver Swing

  • Kim, Yong-Seok;So, Jae-Moo
    • Korean Journal of Applied Biomechanics
    • /
    • v.26 no.3
    • /
    • pp.265-272
    • /
    • 2016
  • Objective: The aim of this study was to analyze X-factor, triple X-factor, and the center of pressure (COP) according to the feel of golf driver swing. Method: For this research, 9 golfers from the Korea Professional Golfers' Association (age: $30.11{\pm}2.98yrs$, height: $178.00{\pm}8.42cm$, weight: $76.22{\pm}8.42kg$, experience: $10.06{\pm}3.11yrs$) were recruited to participate in the experiment. Twelve Motion Analysis Eagle-4 cameras were installed and an image analysis was conducted by using the NLT (non-linear transformation) method, and 2 units of Kistler type 5233A dynamometer were used to measure ground reaction force. The sampling ratio was set at 1000 Hz. The golfers each took 10 swings by using their own driver, and chose the best and worse feel from among 10 shots. A paired-sample t-test was used to analyze the results. Results: In regard to feel, no change in head speed, X-factor, and the triple X-factor's X-factor stretch, hip rise, and head swivel, was observed (p>.05). Regarding ground reaction force, a difference was observed between the top of the backswing (p<.05) and impact (p<.05) in the vertical force of the left foot. For COP, a difference was also observed between the mid backswing (p<.001), late backswing (p<.001), and top of the backswing (p<.05) for the right foot X-axis and Y-axis mid follow through (p<.01). Conclusion: It can be reasoned that, irrespective of feel, the head speed, X-factor and triple X-factor's X-factor stretch, hip rise and head swivel did not have an effect on drive distance for domestic golfers, and the vertical reaction force of the left foot and left-right movement span's pressure dispersal of the right foot had an increasing effect on drive distance.

Cooperative Guidance Law for Multiple Near Space Interceptors with Impact Time Control

  • Guo, Chao;Liang, Xiao-Geng
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.15 no.3
    • /
    • pp.281-292
    • /
    • 2014
  • We propose a novel cooperative guidance law design method based on the finite time disturbance observer (FTDO) for multiple near space interceptors (NSIs) with impact time control. Initially, we construct a cooperative guidance model with head pursuit, and employ the FTDO to estimate the system disturbance caused by target maneuvering. We subsequently separate the cooperative guidance process into two stages, and develop the normal acceleration command based on the super-twisting algorithm (STA) and disturbance estimated value, to ensure the convergence of the relative distance. Then, we also design the acceleration command along the line-of-sight (LOS), based on the nonsingular fast terminal sliding mode (NFTSM) control, to ensure that all the NSIs simultaneously hit the target. Furthermore, we prove the stability of the closed-loop guidance system, based on the Lyapunov theory. Finally, our simulation results of a three-to-one interception scenario show that the proposed cooperative guidance scheme makes all the NSIs hit the target at the same time.