• 제목/요약/키워드: head model

검색결과 1,571건 처리시간 0.036초

맞춤형 머리전달함수에 사용될 수 있는 장구 회전타원체 형상 머리모델과 구형 머리모델 간의 비교 (Comparison between a spherical head model and a prolate spheroidal head model used in HRTF customization)

  • 조현;박영진;박윤식
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 추계학술대회논문집
    • /
    • pp.1009-1013
    • /
    • 2007
  • To do a HRTF customization, researchers used a spherical head model for modeling the head block of structural modeling of HRTF, which is the one of the technique for HRTF customization, because of its simplicity. In this paper, an analytic spheroidal HRTF caused by an incident point source will be introduced. Using proposed spheroidal HRTF, near-field HRTF customization can be applicable through a structural modeling of HRTF. To see the necessity of sheroidal head model, comparison of two analytic solutions, which are classical spherical HRTF and proposed spheroidal HRTF, will be shown. On the view point of ITD, optimal head model which matches with the measured ITD of KEMAR HRTF can be obtained. ITD results show that there are only slight differences between spherical and spheroidal head model. Magnitude comparison is made by constructing head model using measured head size. Although magnitude comparison is not studied between optimal models, the results of 24 of 36 subjects are shown that spheroidal head model matches notch frequency pattern of measured HRTF better than those of spherical one, where the sound source is at contralateral position.

  • PDF

FDTD를 이용한 인체 두부모델의 SAR 분포특성 해석 (Analysis of SAR Distribution Characteristics in a Head Model using FDTD)

  • 홍동욱;김두현;강동규
    • 한국안전학회지
    • /
    • 제19권2호
    • /
    • pp.34-40
    • /
    • 2004
  • This paper presents an analysis of SAR(Specific Absorption Rate) distribution characteristics in a head model using FDTD(Finite Difference Time Domain). In this study human head was modelled in four elements-layered structure, consisting of skin, fat, skull and brain. To calculate the electromagnetic fields wihtin the head model, FDTD method was used. In the FDTD method, the electromagnetic wave is analyzed by solving a Maxwell's equations repeatedly. For the calculation, distance between power source and head model increased by 10[m]. Power density and incident electric field intensity were calculated. Based on the incident electric field, the program which calaculated internal electric fields intensity and SAR calculation of the head model were developed. The results of developed program using FDTD were compared with those of a commericial programs, which showed the availability and usefulness of the suggested scheme in this paper.

Analysis of Traumatic Brain Injury Using a Finite Element Model

  • Suh Chang-Min;Kim Sung-Ho;Oh Sang-Yeob
    • Journal of Mechanical Science and Technology
    • /
    • 제19권7호
    • /
    • pp.1424-1431
    • /
    • 2005
  • In this study, head injury by impact force was evaluated by numerical analysis with 3-dimensional finite element (FE) model. Brain deformation by frontal head impact was analyzed to evaluate traumatic brain injury (TBI). The variations of head acceleration and intra-cranial pressure (ICP) during the impact were analyzed. Relative displacement between the skull and the brain due to head impact was investigated from this simulation. In addition, pathological severity was evaluated according to head injury criterion (HIC) from simulation with FE model. The analytic result of brain damage was accorded with that of the cadaver test performed by Nahum et al.(1977) and many medical reports. The main emphasis of this study is that our FE model was valid to simulate the traumatic brain injury by head impact and the variation of the HIC value was evaluated according to various impact conditions using the FE model.

선추적공식을 이용한 머리전달함수의 회전타원체 형상 모델링 (A prolate spheroidal head modeling of head related transfer function based on ray tracing formula)

  • 조현;박영진;박윤식
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 춘계학술대회논문집
    • /
    • pp.934-938
    • /
    • 2008
  • To customize individual characteristics of HRTF, a spherical model has been used for structural modeling technique. A pseudo-code of prolate spheroidal HRTF caused by incident acoustic point source is already developed, and it can be used a head shadow filter for structural modeling of HRTF. In this research, to see the necessity and efficiency of spheroidal head modeling, ITD optimization is performed on CIPIC HRTF database. From given cost function, ITD-optimized spheroidal head model, whose ITD information is the most matched version of measured ITD information, is found by varying head parameters subject by subject. By comparing results of ITD-optimized spheroids and ITD-optimized spheres, we concluded that a spherical head model is more efficient way of generating head shadow effect than a spheroidal head model does.

  • PDF

Numerical Human Head Model for Traumatic Injury Assessment

  • Park, Hyung-Yun
    • Journal of Mechanical Science and Technology
    • /
    • 제15권7호
    • /
    • pp.995-1001
    • /
    • 2001
  • The finite element human head model is developed for traumatic injury assessment. The model is constructed based on the precise anatomical geometry and validated with test results. In this paper, structural and physiologic explanation of human head will be introduced as well as the modeling methodology. Some of simulation results are also chosen to present major features of the model.

  • PDF

평면 2자유도 모델을 이용한 LMG 상에서 이동되는 Cross Head의 사행동 해석 (Analysis of the Snake Motion of a Machine Tool Cross Head Assembly Travelling on Parallel Linear Motion Guides Using a Planar 2-D.O.F. Model)

  • 최영휴;김성훈;정택수;장은성
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2001년도 추계학술대회(한국공작기계학회)
    • /
    • pp.111-116
    • /
    • 2001
  • In this paper, a simple 2 D.O.F. planar motion model is proposed in order to analyze the snake motion of a machining center cross head assembly, that is travelling on linear guide rails. In the proposed mathematical model, the friction between head and guide ways is neglected, and also the support structures including guide rails, rear- and side-panels of the machining center are assumed to be rigid. The equations of motion of the proposed model are derived and successfully solved to determine vibration responses of the head assembly due to some applied traction forces.

  • PDF

한국 성인의 3차원 표준 머리모형 (A Study of Standard Head Model for Korean Adults by 3D Measurement)

  • 김혜수;이경화;박세진
    • 한국의류학회지
    • /
    • 제30권4호
    • /
    • pp.542-553
    • /
    • 2006
  • The purpose of this study were to analyse of craniofacial shape by 3D and to develope of head models for Korean adults with gender and age groups. The 3D measurement technique adapted in this study was a novel approach compared that the same technique has been commonly used in measuring human bodies. The data and the model of head analysis can be used as a basic reference in developing various head related items such as hat, helmet, gas mask, ear phone, and etc. In this study, heads of 836 Korean adults were measured in 3D, analyzed by statistical methods, and modelized in 3D by gender and age groups. From the basic statistical data analysis, vertex-tragion and the length between the pupils were the longest in their twenties for both men and women, and grew shorter in elderly groups. In all categories, a significant difference appeared between men and women in their 20's, but the differences were less noticeable in elderly groups. Compared to the one size standard head model of the Korea Occupational Safety and Health Agency, the above three-dimensional standard head model would provide a more through fit because gender and age groups were sub-divided and analyzed in 3D.

1 차원 Lumped 모델을 이용한 산업용 잉크젯 프린팅 헤드 토출 특성 해석 (Performance Analysis of the Industrial Inkjet Printing Head Using 1D Lumped Model)

  • 심원철;김영재;박창성;유영석;정재우;오용수;박성준
    • 한국정밀공학회지
    • /
    • 제24권11호
    • /
    • pp.101-107
    • /
    • 2007
  • Jettability analysis using one-dimensional(1D) lumped parameter model has been investigated to design the industrial inkjet head with proper drop velocity and drop volume. By simplifying the inkjet head system into an equivalent electrical circuit, lumped model has been developed. Performance of the lumped model is verified by the comparison between measured results of droplet velocity and ejection volume and predicted value. Also, the jetting performance of an inkjet head is characterized by varying the design parameter and driving condition. As a result, simulation results shows good agreement with the experimentally measured value. The developed lumped model enables to easily understand the effect of dimension change and predict the jetting performance.

열 잉크젯 프린트헤드의 집중질량 모델링 (Lumped Modeling of Thermal Inkjet Print Head)

  • 이유섭
    • 대한기계학회논문집B
    • /
    • 제30권10호
    • /
    • pp.942-949
    • /
    • 2006
  • A lumped model is proposed to predict liquid ejection characteristics of a thermally driven inkjet print head. The model is based on a two-dimensional heat conduction equation, an empirical pressure-temperature equation and a nonlinear hydraulic flow-pressure equation. It has been simulated through the construction of an equivalent R-C circuit, and subsequently analyzed using SIMULINK and a circuit simulation tool, PLECS. Using the model, heating and cooling characteristics of the head are predicted to be in agreement with the IR temperature measurements. The effects of the head geometry on the drop ejection are also analyzed using the nonlinear hydraulic model. The present model can be used as a design tool for a better design of thermal inkjet print heads.

피스톤 헤드의 형상에 따른 열응력 해석에 관한 융합 연구 (A Convergent Investigation on Thermal Stress Analysis due to Piston Head Shape)

  • 오범석;조재웅
    • 한국융합학회논문지
    • /
    • 제11권7호
    • /
    • pp.163-167
    • /
    • 2020
  • 본 연구에서는 피스톤 헤드의 형상별 열응력해석을 진행하여 내구성이 있는 피스톤의 형상을 고찰하기 위한 연구를 진행하였다. 그 결과로서는 온도가 가해지는 부분에서부터 거리가 멀수록 낮은 온도를 볼 수 있다. 피스톤 헤드의 형상에 따라 열을 받는 면적이 다르기 때문에 피스톤 기둥 부분과 스커트부에 영향을 끼치게 된 점을 볼 수 있었다. 본 연구에서는 세 모델이 동일하게 피스톤 헤드의 중심부에서 가장 적은 응력이 나오는 것을 알 수 있었다. Model A는 다른 두 모델에 비해 항복이 발생하는 응력이 가장 작은 것을 알 수 있었다. Model B는 접시형 피스톤헤드로서 피스톤 헤드부가 오목한 형상으로 되어 있어 피스톤 헤드 중심부에서는 주변 부분에 영향을 가장 덜 끼치는 모델임을 알 수 있었다. Model C는 항복이 발생하게 되는 응력이 가장 크게 보였다. 또한 본 연구결과는 내구성이 있는 피스톤의 형상 설계에 유용하게 적용할 수 있다고 사료된다. 피스톤 헤드의 형상에 따른 열응력 해석을 적용함으로서, 본 연구가 미적인 융합에 부합된다고 사료된다.