• Title/Summary/Keyword: head loss coefficient

Search Result 51, Processing Time 0.021 seconds

Estimation of Head Loss Coefficients at Surcharged Square Manhole Using Numerical Model (수치모형을 이용한 과부하 사각형 맨홀에서의 손실계수 산정)

  • Kim, Jung-Soo;Lim, Ga-Hui;Rim, Chang-Soo;Yoon, Sei-Eui
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.3
    • /
    • pp.143-150
    • /
    • 2011
  • Energy loss at manholes, often exceeding friction loss of pipes under surcharged flow, is considered as one of the major causes of inundation in urban area. Therefore, it is important to analyze the head losses at manholes, especially in case of surcharged flow. The stream characteristics were analyzed and head loss coefficients were estimated by using the computational fluid dynamics(CFD) model, FLUENT 6.3, at surcharged square manhole in this study. The CFD model was carefully assessed by comparing simulated results with the experimental ones. The study results indicate that there was good agreement between simulation model and experiment. The CFD model was proved to be capable of estimating the head loss coefficients at surcharged manholes. The head loss coefficients with variation of the ratio of manhole width(B) to inflow pipe diameter(d) and variation of the drop height at surcharged square manhole with a straight-path through were calculated using FLUENT 6.3. As the ratio of B/d increases, head loss coefficient increases. The depth and head loss coefficient at manhole were gradually increased when the drop height was more than 5cm. Therefore, the CFD model(Fluent 6.3) might be used as a tool to simulate the water depth, energy losses, and velocity distribution at surcharged square manhole.

Effect of Wall Thickness of Perforated Wall with Vertical Slits on Wave Reflection and Transmission (연직 슬릿 유공벽의 벽두께가 파랑 반사 및 전달에 미치는 영향)

  • Kwon, Kab Keun;Lee, Jong In;Yoon, Sung Bum
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.26 no.6
    • /
    • pp.343-351
    • /
    • 2014
  • The reflection and transmission coefficients of waves due to perforated wall are mainly determined by both the porosity and wall thickness of the perforated wall and the period and nonlinearity of incident waves. Among them the wall thickness is very important because it affects the head loss coefficient and the inertia length of the wall. However, by employing the head loss coefficient derived for sharp crested orifice, the previous researches have neglected, or incorrectly considered the effect of wall thickness on the head loss coefficient. Even though it is considered, the effect of the inertia length is neglected in some empirical formulae. Thus, the effect of wall thickness on the reflection and transmission coefficients of waves is not properly considered. In this study comprehensive experiments are conducted for the perforated walls with various thicknesses, and the results are compared with those predicted by the empirical formulae. As a result it is found that the existing formulae can not properly consider the effect of wall thickness, and it is confirmed that a new formula which can correctly consider the effect of wall thickness on the head loss coefficient is necessary.

An experimental study for estimation of head loss coefficients at surcharged four-way combining manholes (과부하 4방향 합류맨홀에서의 손실계수 산정을 위한 실험 연구)

  • Ryu, Taek Hee;Kim, Jung Soo;Yoon, Sei Eui
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.12
    • /
    • pp.1015-1025
    • /
    • 2016
  • In general, manholes installed as urban drainage facilities are a variety forms such as straight path manholes, 90 degree bend manhole, three-way combining manhole, and four-way combining manhole. In particular, the surcharged flow at a four-way manholes installed in the downstream of urban sewer system is the main cause of the urban inundation caused by the energy loss. Therefore, it is necessary to analyze the flow characteristics and estimate the head loss coefficients at surcharged four-way combining manholes. The hydraulic experimental apparatus which can change the manhole shapes (square, circle) and flow ratios were installed to estimate the head loss coefficients. In the experiments, two inflows ($Q_m$, $Q_{lat}$) were varied from 0 to $4.8{\ell}/sec$ and 24 combinations were tested in total. The flow ratios $Q_{lat}/Q_{out}$ were varied from 0 to 1 for a total flow $Q_{out}$ ($Q_{out}=Q_m+2Q_{lat}$) of 2, 3, 4, and $4.8{\ell}/sec$, respectively. The variation of head losses were strongly influenced by the lateral inflow because the head loss coefficient increases as the flow ratios $Q_{lat}/Q_{out}$ increases. It was estimated head loss coefficients of the circular manhole is slightly lower than those of the square manhole. However, there was no significant difference of head loss as discharges change. The range of head loss coefficients at four-way combining manhole according to the change of the lateral inflow ratio was estimated to be 0.4 to 0.8. Also, the relation equations between the head loss coefficients (K) and the lateral inflow ratios ($Q_{lat}/Q_{out}$) were suggested in this paper.

An Analysis of Attenuation Effect of Pressure Head Using an Air Chamber

  • Lee, Jae-Soo;Yoon, Yong-Nam;Kim, Joong-Hoon
    • Korean Journal of Hydrosciences
    • /
    • v.7
    • /
    • pp.77-86
    • /
    • 1996
  • An air chamber is design to keep the pressure from exceeding a predetermined value, or to prevent low pressures and colum separation. Therefore, it can be used to protect against rapid transients in a pipe system following abrupt pump stoppage. In this research, an air chmber was applied to a hypthetical pipe system to analyze attenuation effect of pressure head for different air volumes, locations, chamber areas, coefficients of orifice loss and pollytropic exponents. With an increase of air volume, the maximum pressure head at pump site is decreased and the minimum pressure head is imcreased. For different locations and areas of the chamber, the attenuation effects do not show much difference. Also, as the orifice loss coefficient increases, the maximum pressure head is decreased. For different polytropic exponents, isothermal process shows lower maximum pressure head than that of the adiabatic process.

  • PDF

An Experimental Study for Estimation of Head Loss Coefficients at Surcharged Combining Junction Manholes (과부하 합류맨홀에서의 손실계수 산정을 위한 실험적 연구)

  • Kim, Jung-Soo;Choi, Hyun-Soo;Yoon, Sei-Eui
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.5
    • /
    • pp.445-453
    • /
    • 2010
  • Energy loss at manholes, often exceeding friction loss of pipes under surcharged flow, is considered as one of the major causes of inundation in urban area. Therefore, it is necessary to analyze head losses at manholes, especially in case of surcharged flow. Hydraulic experimental apparatus which can change the manhole shape (square, circular) were installed for this study. In the experiments, two inflows ($Q_1,\;Q_2$) were varied from 0 to $4{\ell}$/sec and 15 combinations were tested in total. The flow ratios $Q_2/Q_3$ were varied from 0 to 1 for a total flow $Q_3$ ($Q_3=Q_1+Q_3$) of 2, 3, and $4{\ell}$/sec, respectively. The variation of head losses were strongly influenced by the lateral inflow because the head loss coefficient increases as the flow ratio $Q_2/Q_3$ increases. There was no significant difference of head loss between square manhole and circular one, and also no large variation of head loss as discharges change. The relation equations between K and $Q_2/Q_3$ were suggested in this paper.

Development of the Seepage Flow Monitoring Method by the Hydraulic Head Loss Rate (수두손실률에 의한 침투류 감시기법 개발)

  • Eam, Sung-Hoon;Kang, Byung-Yoon;Kim, Ki-Wan;Koo, Ja-Ho;Kang, Shin-Ik;Cha, Hung-Youn;Jung, Jae-Hyun;Cho, Jun-Ho;Kim, Ki-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.5
    • /
    • pp.37-48
    • /
    • 2010
  • In this study, the seepage flow monitoring method by the hydraulic head loss rate was developed for the purpose of application to offshore construction site enclosed by cofferdams in which seepage force varies periodically. The amount of the hydraulic head loss rate newly defined in this graph was in a range between 0 and 1. The zero of the rate means the existence of flow with no seepage resistance. The 1 of the rate means no seepage flow through the ground. The closer to 1 the coefficient of determinant in the hydraulic head loss graph is, the more the ground through which seepage water flows is stable. The closer to 0 the coefficient of determinant in the hydraulic head loss graph is, the more the ground through which seepage water flows was unstable and the higher the possibilities of existence of empty space or of occurrence of piping on the seepage flow pass in the ground is. The hydraulic head loss graph makes it possible to monitor sensitively the situation of seepage flow state, and the graph helps to understand easily the seepage flow state at the specific section on the whole cofferdam.

Inundation Analysis in Urban Area Considering of Head Loss Coefficients at Surcharged Manholes (과부하 맨홀의 손실계수를 고려한 도시지역 침수해석)

  • Lee, Won;Kim, Jung Soo;Yoon, Sei Eui
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.2
    • /
    • pp.127-136
    • /
    • 2015
  • In general, XP-SWMM regards manholes as nodes, so it can not consider local head loss in surcharged manhole depending on shape and size of the manhole. That might be a reason why XP-SWMM underestimates inundated-area compared with reality. Therefore, it is necessary to study how we put the local head loss in surcharged manhole in order to simulate storm drain system with XP-SWMM. In this study, average head loss coefficients at circular and square manhole were estimated as 0.61 and 0.68 respectively through hydraulic experiments with various discharges. The estimated average head loss coefficients were put into XP-SWMM as inflow and outflow energy loss of nodes to simulate inundation area of Gunja basin. Simulated results show that not only overflow discharge amount but inundated-area increased considering the head loss coefficients. Also, inundation area with considering head loss coefficients was matched as much as 58% on real inundation area. That was more than simulated results without considering head loss coefficients as much as 18 %. Considering energy loss in surcharged manholes increases an accuracy of simulation. Therefore, the averaged head loss coefficients of this study could be used to simulate storm drain system. It was expected that the study results will be utilized as basic data for establishing the identification of the inundation risk area.

Applicability Analysis of Head Loss Coefficients at Surcharge Manholes for Inundation Analysis in Urban Area (도시침수해석을 위한 과부하 맨홀의 손실계수 적용성 분석)

  • Kim, Chae Rin;Kim, Jung Soo;Yoon, Sei Eui
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.3
    • /
    • pp.395-406
    • /
    • 2018
  • The XP-SWMM model, widely used for inundation analysis of urban watersheds, underestimated the inundation area (range) because the manhole was regarded as a node and the influence of the local loss occurring in the surcharged manhole can not be considered. Therefore, it is necessary to analyze the applicability of the head loss coefficients considering the local loss in the surcharged manholes in inundation analysis using XP-SWMM. The Dorim 1 drainage section of the Dorim-river watershed, where frequent domestic flood damage occurred, was selected as the study watershed. The head loss coefficients of the surcharged manholes estimated from the previous experimental studies were applied to the inundation analysis, and the changes of the inundation area with and without the application of the head loss coefficients with manhole types were compared and analyzed. As a result of inundation simulation with the application of head loss coefficients, the matching rates were increased by 17% in comparison with the without application of them. In addition, the simulated inundation area applied only the head loss coefficients of straight path manholes and applied up to the head loss coefficients of combining manholes ($90^{\circ}$ bend, 3-way, and 4-way) were similar. Therefore, in order to accurately simulate the storm drain system in urban areas, it could be to carry out two-dimensional inundation analysis considering the head loss coefficients at the surcharged manholes. It was expected that the study results will be utilized as basic data for establishing the identification of the inundation risk area.

An Analysis of Attenuation Effect of Pressure Head Using an Air Chamber (공기실을 사용한 압력수두의 완화효과에 대한 분석)

  • Lee, Jae-Su;Yun, Yong-Nam;Kim, Jung-Hun
    • Water for future
    • /
    • v.28 no.5
    • /
    • pp.141-150
    • /
    • 1995
  • An air chamber is designed to keep the pressure from exceeding a predetermined value, or to prevent low pressures and column separation. Therefore, it can be used to protect against rapid transients in a pipe system following abrupt pump stoppage. In this research, an air chamber was applied to a hypothetical pipe system to analyze attenuation effect of pressure head for different air volumes, locations, chamber areas, coefficients of orifice loss and polytropic exponents. With an increase of air volume, the maximum pressure head at pump site is decreased and the minimum pressure head is increased. For different locations and areas of the chamber, the attenuation effects do not show much difference. Also, as the orifice loss coefficient increases, the maximum pressure head is decreased. For different polytropic exponents, isothermal process shows lower maximum pressure head than that of the adiabatic process.

  • PDF