• Title/Summary/Keyword: head blight

Search Result 69, Processing Time 0.023 seconds

Genetic Variation and Biological Control of Fusarium graminearum Isolated from Wheat in Assiut-Egypt

  • Mahmoud, Amer F.
    • The Plant Pathology Journal
    • /
    • v.32 no.2
    • /
    • pp.145-156
    • /
    • 2016
  • Fusarium graminearum Schwabe causes Fusarium head blight (FHB), a devastating disease that leads to extensive yield and quality loss of wheat and other cereal crops. Twelve isolates of F. graminearum were collected from naturally infected spikes of wheat from Assiut Egypt. These isolates were compared using SRAP. The results indicated distinct genetic groups exist within F. graminearum, and demonstrated that these groups have different biological properties, especially with respect to their pathogenicity on wheat. There were biologically significant differences between the groups; with group (B) isolates being more aggressive towards wheat than groups (A) and (C). Furthermore, Trichoderma harzianum (Rifai) and Bacillus subtilis (Ehrenberg) which isolated from wheat kernels were screened for antagonistic activity against F. graminearum. They significantly reduced the growth of F. graminearum colonies in culture. In order to gain insight into biological control effect in situ, highly antagonistic isolates of T. harzianum and B. subtilis were selected, based on their in vitro effectiveness, for greenhouse test. It was revealed that T. harzianum and B. subtilis significantly reduced FHB severity. The obtained results indicated that T. harzianum and B. subtilis are very effective biocontrol agents that offer potential benefit in FHB and should be harnessed for further biocontrol applications. The accurate analysis of genetic variation and studies of population structures have significant implications for understanding the genetic traits and disease control programs in wheat. This is the first known report of the distribution and genetic variation of F. graminearum on wheat spikes in Assiut Egypt.

'Samkwang1', a Medium Maturing, Multiple Disease Resistant, and High-quality Rice (중생 복합내병성 고품질 벼 '삼광1호')

  • Lee, Jeong-Heui;Won, Yong-Jae;Cho, Young-Chan;Lee, Jeom-Ho;Yang, Chang-Ihn;Kim, Myeong-Ki;Ahn, Eok-Keun;Suh, Jung-Pil;Lee, Sang-Bok;Jeon, Yong-Hee;Sung, Yeol-Kyu;Jeong, Eung-Gi;Ha, Woon-Goo;Chang, Jae-Ki;Jung, Kuk-Hyun;Yoon, Mi-Ra;Kang, Kyeong-Ho;park, Hyang-Mi;Roh, Jae-Hwan;Kim, Bo-Kyeong
    • Korean Journal of Breeding Science
    • /
    • v.50 no.4
    • /
    • pp.490-496
    • /
    • 2018
  • "Samkwang1," a japonica rice variety, was developed as a cross between "Samkwang" and F1 of Suwon152 (IT008283), which has a medium maturing and lodging resistance and Samkwang (IT284608), a high quality variety with bacterial blight resistance and mid-late maturing property by the rice breeding team at NICS in 2015. The heading date of "Samkwang1" was August 8 in the middle plain area, which was 2 days early than that of "Hwaseong." "Samkwang1" had a culm length of 77 cm, which was 7 cm shorter than that of "Hwaseong," and it had 128 spikelets per panicle. The viviparous germination rate of "Samkwang1" was 2.1%. "Samkwang1" showed resistance to blast, bacterial blight (K1, K2, and K3 race) and stripe virus, but was susceptible to the K3a race of bacterial blight, dwarf and black streak dwarf viruses, and plant hoppers. The milled rice of this variety exhibits translucent and medium short grains. The cooked rice grains of "Samkwang1" have an excellent palatability index (0.35) and lower protein content (6.2%) than that of "Hwaseong." The characteristics related to grain milling were better than those of "Hwaseong," especially the head rice milling recovery ratio and head rice ratio (94.2%). "Samkwang1" showed 5.62 MT/ha of milled rice productivity at 11 sites under ordinary cultivation conditions (Registration No. 6798).

'Jungmo1033', a Derivative of High-quality Native Rice Variety 'Jagwangdo' (재래벼 '자광도' 유래 고품질 벼 '중모1033')

  • Jeong, Eung-Gi;Won, Yong-Jae;Ahn, Eok-Keun;Hyun, Ung-Jo;Cho, Young-Chan;Suh, Jung-Pil;Oh, Myoung-Kyu;Lee, Jeom-Ho;Hong, Ha-Cheol;Lee, Chung-Kuen;Jeon, Yong-Hee;Jeung, Ji-Ung;Chung, Hi-Che;Kim, Bo-Kyeong
    • Korean Journal of Breeding Science
    • /
    • v.51 no.1
    • /
    • pp.34-40
    • /
    • 2019
  • 'Jungmo1033', a japonica rice variety, was developed by the rice breeding team at the National Institute of Crop Science (NICS) in 1992. It is derived from a cross between a native variety 'Jagwangdo', which has translucent milled rice and medium maturity; and 'Hwayeong', which is an elite line with bacterial blight resistance and mid-late maturity. The heading date of 'Jungmo1033' was August 10 in the middle plain area of Korea, which was two days later than that of 'Hwaseong'. 'Jungmo1033' has a culm length of 79 cm, which was 5 cm shorter than that of 'Hwaseong', and 105 spikelets per panicle. 'Jungmo1033' showed resistance to bacterial blight (K1, K2, and K3 races) and stripe virus, but susceptibility to the K3a race of bacterial blight, dwarf and black-streaked dwarf viruses, and planthoppers. The milled rice of this variety exhibited translucency and a medium short grain shape. It had an excellent appearance and lower amylose content (19.1%) than that of 'Hwaseong'. The characteristics related to grain milling were better than those of 'Hwaseong', especially head rice milling recovery ratio and head rice ratio (94.8%). 'Jungmo1033' showed a milled rice productivity of 5.38 MT/ha at 11 sites under ordinary cultivation conditions. (Registration No. 5723)

Fungicide Effects in Vitro and in Field Trials on Fusarium Head Blight of Wheat (국내 발생 밀 붉은곰팡이병에 대한 약제의 배지상의 효과 검정과 포장 방제 약제 선발)

  • Park, Jung-Mi;Shin, Sang-Hyun;Kang, Chun-Sik;Kim, Kyung-Hoon;Cho, Kwang-Min;Choi, Jae-Seong;Kim, Hyung-Moo;Park, Jong-Chul
    • Research in Plant Disease
    • /
    • v.18 no.3
    • /
    • pp.194-200
    • /
    • 2012
  • The objective of this research was to select effective fungicides for the control of Fusarium head bight (FHB) of wheat. We tested fourteen commercial fungicides against FHB in the laboratory and under field. Fludioxonil FS, Fludioxonil SC, and Benomyl + Thiram WP highly inhibited the mycelial growth of Fusarium graminearum on the medium while Oxine-copper WP, Thiophanate-methyl WP, and Copper hydroxide WP were not effective against FHB. To verify the disease control in field condition, we selected four fungicides such as Fludioxonil SC, Captan WP, Difenoconazole + propiconazole EC, and Metconazole SC. Their control efficacy on FHB disease severity of wheat was examined after the fungicide treatment twice (30th April and 10th May, 2012) in the two field locations (Iksan and Gimje). With no treatment, FHB severity was 45% and 33.7% in Gimje and Iksan, respectively. FHB disease incidence after fungicide treatment was between 0.3% and 2.2% in Gimje, showing over 95% FHB disease control. FHB disease incidence of fungicide-treated sector in Iksan showed slightly higher than Gimje but the control value of fungicides exhibited 87-90%. No side effect of the chemicals was observed in fungicide treatment. These results showed that four fungicides were effective in the FHB disease control in wheat.

Disease Incidences in Radish and Chinese Cabbage. I. Major Diseases in Radish and Chinese Cabbage grown in Alpine Areas in Jeonbug Province (고냉지단경기채소(무우. 배추) 및 평야지 추작채소단지에 발생하는 주요병해조사 I. 전북고냉지단경기 무우, 배추 주요병해)

  • So I.Y.;Lee S.H.;Kim H.M.;Lee W.H.
    • Korean journal of applied entomology
    • /
    • v.20 no.3 s.48
    • /
    • pp.135-145
    • /
    • 1981
  • Vegetables including Chinese cabbage and radish have been grown in alpine areas such as Muju, Namweon, Jinan and Jangsu during the shortage period of vegetables. The incidence of various diseases, environmental factors such as temperatures and rainfalls, and aphid populations as virus vector were observed at 10-day intervals from July to September in those areas. Disease incidence showed no significant difference among locations. Major diseases in Chin ese cabbage were bacterial soft rot, white spot, downy mildew, mosaic virus, Alternaria leaf spot and Fusarium seedling blight. Major diseases in radish were virus, white rust, black rot, root rot, leaf spot and Fusarium seedling blight. Disease incidence reached peak on Aug. 20 with $27\%$ infection in radish and with $20\%$ infection in Chinese cabbage during the growing season, and declined thereafter. Percentage of infection in each growth stage showed $25\%$ at root thickening stage and $26\%$ at the harvest time in radish; and the head formation stage, $24\%$ at the harvest time. The data indicate that disease incidence in radish increased rapidly at late growing stage and progressively increased in Chinese cabbage Seedling blight caused by Fusarium sp. and root rot caused by Aphanomyces sp. were also observed in those areas. Cool and wet weather appeared to be favorable for disease incidences during the rainy period of growing season although average temperature was about $25^{\circ}C$. Populations of aphids were lower in the alpine vegetable growing area than that of flat areas. Aphids as virus vectors from total aphids collected were $73.5\%$ or 289 virus vectors /993 total aphids in Namweon and $18.1\%$ or 31 virus vectors/171 total aphids in Muju. The most prerevalent species of aphids was Myzus persicae Sulz.

  • PDF

Comparative Pathogenicity of Fusarium graminearum Isolates from Wheat Kernels in Korea

  • Shin, Sanghyun;Son, Jae-Han;Park, Jong-Chul;Kim, Kyeong-Hoon;Yoon, Young-mi;Cheong, Young-Keun;Kim, Kyong-Ho;Hyun, Jong-Nae;Park, Chul Soo;Dill-Macky, Ruth;Kang, Chon-Sik
    • The Plant Pathology Journal
    • /
    • v.34 no.5
    • /
    • pp.347-355
    • /
    • 2018
  • Fusarium head blight (FHB) caused by Fusarium species is a major disease of wheat and barley around the world. FHB causes yield reductions and contamination of grains with trichothecene mycotoxins including; nivalenol (NIV), deoxynivalenol (DON), 3-acetyldeoxynivalenol (3-ADON), and 15-acetyldeoxynivalenol (15-ADON). The objectives of this study were to identify strains of F. graminearum isolated in Korea from 2012-harvested wheat grain and to test the pathogenicity of these NIV- and DON-producing isolates. Three hundred and four samples of wheat grain, harvested in 2012 in Chungnam, Chungbuk, Gyeongnam, Jeonbuk, Jeonnam, and Gangwon provinces were collected. We recovered 44 isolates from the 304 samples, based on the PCR amplification of internal transcribed spacer (ITS) rRNA region and sequencing. Our findings indicate that F. asiaticum was the predominant (95% of all isolates) species in Korea. We recovered both F. asiaticum and F. graminearum from samples collected in Chungnam province. Of the 44 isolates recovered, 36 isolates had a NIV genotype while 8 isolates belonged to the DON genotype (3-ADON and 15-ADON). In order to characterize the pathogenicity of the strains collected, disease severity was assessed visually on various greenhouse-grown wheat cultivars inoculated using both NIV- and DON-producing isolates. Our results suggest that Korean F. graminearum isolates from wheat belong to F. asiaticum producing NIV, and both F. graminearum and F. asiaticum are not significantly different on virulence in wheat cultivars.

A Putative Transcription Factor pcs1 Positively Regulates Both Conidiation and Sexual Reproduction in the Cereal Pathogen Fusarium graminearum

  • Jung, Boknam;Park, Jungwook;Son, Hokyoung;Lee, Yin-Won;Seo, Young-Su;Lee, Jungkwan
    • The Plant Pathology Journal
    • /
    • v.30 no.3
    • /
    • pp.236-244
    • /
    • 2014
  • The plant pathogen Fusarium graminearum causes Fusarium head blight in cereal crops and produces mycotoxins that are harmful to animals and humans. For the initiation and spread of disease, asexual and sexual reproduction is required. Therefore, studies on fungal reproduction contribute to the development of new methods to control and maintain the fungal population. Screening a previously generated transcription factor mutant collection, we identified one putative $C_2H_2$ zincfinger transcription factor, pcs1, which is required for both sexual and asexual reproduction. Deleting pcs1 in F. graminearum resulted in a dramatic reduction in conidial production and a complete loss of sexual reproduction. The pathways and gene ontology of pcs1-dependent genes from microarray experiments showed that several G-protein related pathways, oxidase activity, ribosome biogenesis, and RNA binding and processing were highly enriched, suggesting that pcs1 is involved in several different biological processes. Further, overexpression of pcs1 increased conidial production and resulted in earlier maturation of ascospores compared to the wild-type strain. Additionally, the vegetative growth of the overexpression mutants was decreased in nutrient-rich conditions but was not different from the wild-type strain in nutrient-poor conditions. Overall, we discovered that the pcs1 transcription factor positively regulates both conidiation and sexual reproduction and confers nutrient condition-dependent vegetative growth.

Possible Negative Effect of Pigmentation on Biosynthesis of Polyketide Mycotoxin Zearalenone in Gibberella zeae

  • Jung Sun-Yo;Kim Jung-Eun;Yun Sung-Hwan;Lee Yin-Won
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.9
    • /
    • pp.1392-1398
    • /
    • 2006
  • We investigated a possible coordination between the biosyntheses of two polyketides in the cereal head blight fungus Gibberella zeae, zearalenone (ZEA) and aurofusarin (AUR), which are catalyzed by the polyketide synthases (PKS) PKS4/PKS13 and PKS12, respectively. To determine if the production of one polyketide influences that of the other, we used four different transgenic strains of G zeae; three were deficient for either ZEA or AUR or both, and one was an AUR-overproducing strain. The mycelia of both the wild-type and ${\Delta}PKS4$ strain deficient for ZEA produced AUR normally, whereas the mycelia of both the ${\Delta}PKS12$ and ${\Delta}PKS4::{\Delta}PKS12$ strain showed no AUR accumulation. All the examined deletion strains caused necrotic spots on the surface of com kernels and were found to produce the nonpolyketide mycotoxins trichothecenes to the same amount as the wild-type strain. In contrast, the AUR-deficient ${\Delta}PKS12$ strains produced greater quantities of ZEA and its derivatives than the wild-type progenitor on both a rice substrate and a liquid medium; the AUR-overproducing strain did not produce ZEA on either medium. Furthermore, the expression of both PKS4 and PKS13 was induced earlier in the ${\Delta}PKS12$ strains than in the wild-type strain, and there was no difference in the transcription of PKS12 between the two strains. Therefore, these results indicate that the ZEA biosynthetic pathway is negatively regulated by the accumulation of another polyketide (AUR) in G zeae.

Fusarium graminearum의 ZEB2 동형단백질에 의한 지랄레논 생합성 자가조절

  • Park, Ae Ran;Lee, Yin-Won
    • 한국균학회소식:학술대회논문집
    • /
    • 2016.05a
    • /
    • pp.27-27
    • /
    • 2016
  • The ascomycete fungus Fusarium graminearum is the most common pathogen of Fusarium head blight (FHB), a devastating disease for major cereal crops worldwide. FHB causes significant crop losses by reducing grain yield and quality as well as contaminating cereals with trichothecenes and zearalenone (ZEA) that pose a serious threat to animal health and food safety. ZEA is a causative agent of hyperestrogenic syndrome in mammals and can result in reproductive disorders in farm animals. In F. graminearum, the ZEA biosynthetic cluster is composed of four genes, PKS4, PKS13, ZEB1, and ZEB2, which encode a reducing polyketide synthase, a nonreducing polyketide synthase, an isoamyl alcohol oxidase, and a transcription factor, respectively. Although it is known that ZEB2 primarily acts as a regulator of ZEA biosynthetic cluster genes, the mechanism underlying this regulation remains undetermined. In this study, two isoforms (ZEB2L and ZEB2S) from the ZEB2 gene in F. graminearum were characterized. It was revealed that ZEB2L contains a basic leucine zipper (bZIP) DNA-binding domain at the N-terminus, whereas ZEB2S is an N-terminally truncated form of ZEB2L that lacks the bZIP domain. Interestingly, ZEA triggered the induction of both ZEB2L and ZEB2S transcription. In ZEA producing condition, the expression of ZEB2S transcripts via alternative promoter usage was directly or indirectly initiated by ZEA. Physical interaction between ZEB2L and ZEB2L as well as between ZEB2L and ZEB2S was observed in the nucleus. The ZEB2S-ZEB2S interaction was detected in both the cytosol and the nucleus. ZEB2L-ZEB2L oligomers activated ZEA biosynthetic cluster genes, including ZEB2L. ZEB2S inhibited ZEB2L transcription by forming ZEB2L-ZEB2S heterodimers, which reduced the DNA-binding activity of ZEB2L. This study provides insight into the autoregulation of ZEB2 expression by alternative promoter usage and a feedback loop during ZEA production.

  • PDF

Toxigenic Mycobiota of Small Grain Cereals in Korea

  • Lee, Theresa
    • 한국균학회소식:학술대회논문집
    • /
    • 2016.05a
    • /
    • pp.33-33
    • /
    • 2016
  • Mycotoxins are toxic secondary metabolites produced by fungi. They can be present in where agricultural-based commodities are contaminated with toxigenic fungi. These mycotoxins cause various toxicoses in human and livestock when consumed. Small grains including corn, barley, rice or wheat are frequently contaminated with mycotoxins due to infection mainly by toxigenic Fusarium species and/or under environment favorable to fungal growth. One of the most well-known Fusarium toxin groups in cereals is trichothecenes consisting of many toxic compounds. Deoxynivalenol (DON), nivalenol (NIV), T-2 toxin, and various derivatives belong to this group. Zearalenone and fumonisin (FB) are also frequently produced by many species of the same genus. In order to monitor Korean cereals for contamination with Fusarium and other mycotoxigenic fungal species as well, barley, corn, maize, rice grains, and soybean were collected from fields at harvest or during storage for several years. The fungal colonies outgrown from the grain samples were identified based on morphological and molecular characteristics. Trichothecene chemotypes of Fusarium species or presence of FB biosynthetic gene were determined using respective diagnostic PCR to predict possible toxin production. Heavy grain contamination with fungi was detected in barley, rice and wheat. Predominant fungal genus of barley and wheat was Alternaria (up to 90%) while that of rice was Fusarium (~40%). Epicoccum also appeared frequently in barley, rice and wheat. While frequency of Fusarium species in barley and wheat was less than 20%, the genus mainly consisted of Fusarium graminearum species complex (FGSC) which known to be head blight pathogen and mycotoxin producer. Fusarium composition of rice was more diverse as FGSC, Fusarium incarnatum-equiseti species complex (FIESC), and Fusarium fujikuroi species complex (FFSC) appeared all at considerable frequencies. Prevalent fungal species of corn was FFSC (~50%), followed by FGSC (<30%). Most of FFSC isolates of corn tested appeared to be FB producer. In corn, Fusarium graminearum and DON chemotype dominate within FGSC, which was different from other cereals. Soybeans were contaminated with fungi less than other crops and Cercospora, Cladosporium, Alternaria, Fusarium etc. were detected at low frequencies (up to 14%). Other toxigenic species such as Aspergillus and Penicillium were irregularly detected at very low frequencies. Multi-year survey of small grains revealed dominant fungal species of Korea (barley, rice and wheat) is Fusarium asiaticum having NIV chemotype.

  • PDF