• Title/Summary/Keyword: hazelnut pests

Search Result 2, Processing Time 0.016 seconds

A Highly Pathogenic Strain of Bacillus thuringiensis serovar kurstaki in Lepidopteran Pests

  • Kati, Hatice;Sezen, Kazim;Nalcacioglu, Remziye;Demirbag, Zihni
    • Journal of Microbiology
    • /
    • v.45 no.6
    • /
    • pp.553-557
    • /
    • 2007
  • In order to detect and identify the most toxic Bacillus thuringiensis strains against pests, we isolated a B. thuringiensis strain (Bn1) from Balaninus nucum (Coleoptera: Curculionidae), the most damaging hazelnut pest. Bn1 was characterized via morphological, biochemical, and molecular techniques. The isolate was serotyped, and the results showed that Bn1 was the B. thuringiensis serovar, kurstaki (H3abc). The scanning electron microscopy indicated that Bn1 has crystals with cubic and bipyramidal shapes. The Polymerase Chain Reactions (PCRs) revealed the presence of the cry1 and cry2 genes. The presence of Cry1 and Cry2 proteins in the Bn1 isolate was confirmed via SDS-PAGE, at approximately 130 kDa and 65 kDa, respectively. The bioassays conducted to determine the insecticidal activity of the Bn1 isolate were conducted with four distinct insects, using spore-crystal mixtures. We noted that Bn1 has higher toxicity as compared with the standard B. thuringiensis subsp. kurstaki (HD-1). The highest observed mortality was 90% against Malacosoma neustria and Lymantria dispar larvae. Our results show that the B. thuringiensis isolate (Bn1) may prove valuable as a significant microbial control agent against lepidopteran pests.

Purification and Characterization of the Bacteriocin Thuricin Bn1 Produced by Bacillus thuringiensis subsp. kurstaki Bn1 Isolated from a Hazelnut Pest

  • Ugras, Serpil;Sezen, Kazim;Kati, Hatice;Demirbag, Zihni
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.2
    • /
    • pp.167-176
    • /
    • 2013
  • A novel bioactive molecule produced by Bacillus thuringiensis subsp. kurstaki Bn1 (Bt-Bn1), isolated from a common pest of hazelnut, Balaninus nucum L. (Coleoptera: Curculionidae), was determined, purified, and characterized in this study. The Bt-Bn1 strain was investigated for antibacterial activity with an agar spot assay and well diffusion assay against B. cereus, B. weinhenstephenensis, L. monocytogenes, P. savastanoi, P. syringae, P. lemoignei, and many other B. thuringiensis strains. The production of bioactive molecule was determined at the early logarithmic phase in the growth cycle of strain Bt-Bn1 and its production continued until the beginning of the stationary phase. The mode of action of this molecule displayed bacteriocidal or bacteriolytic effect depending on the concentration. The bioactive molecule was purified 78-fold from the bacteria supernatant with ammonium sulfate precipitation, dialysis, ultrafiltration, gel filtration chromatography, and HPLC, respectively. The molecular mass of this molecule was estimated via SDS-PAGE and confirmed by the ESI-TOFMS as 3,139 Da. The bioactive molecule was also determined to be a heat-stable, pH-stable (range 6-8), and proteinase K sensitive antibacterial peptide, similar to bacteriocins. Based on all characteristics determined in this study, the purified bacteriocin was named as thuricin Bn1 because of the similarities to the previously identified thuricin-like bacteriocin produced by the various B. thuringiensis strains. Plasmid elution studies showed that gene responsible for the production of thuricin Bn1 is located on the chromosome of Bt-Bn1. Therefore, it is a novel bacteriocin and the first recorded one produced by an insect originated bacterium. It has potential usage for the control of many different pathogenic and spoilage bacteria in the food industry, agriculture, and various other areas.