Browse > Article

A Highly Pathogenic Strain of Bacillus thuringiensis serovar kurstaki in Lepidopteran Pests  

Kati, Hatice (Department of Biology, Faculty of Arts and Sciences, Giresun University)
Sezen, Kazim (Department of Biology, Faculty of Arts and Sciences, Karadeniz Technical University)
Nalcacioglu, Remziye (Department of Biology, Faculty of Arts and Sciences, Karadeniz Technical University)
Demirbag, Zihni (Department of Biology, Faculty of Arts and Sciences, Karadeniz Technical University)
Publication Information
Journal of Microbiology / v.45, no.6, 2007 , pp. 553-557 More about this Journal
Abstract
In order to detect and identify the most toxic Bacillus thuringiensis strains against pests, we isolated a B. thuringiensis strain (Bn1) from Balaninus nucum (Coleoptera: Curculionidae), the most damaging hazelnut pest. Bn1 was characterized via morphological, biochemical, and molecular techniques. The isolate was serotyped, and the results showed that Bn1 was the B. thuringiensis serovar, kurstaki (H3abc). The scanning electron microscopy indicated that Bn1 has crystals with cubic and bipyramidal shapes. The Polymerase Chain Reactions (PCRs) revealed the presence of the cry1 and cry2 genes. The presence of Cry1 and Cry2 proteins in the Bn1 isolate was confirmed via SDS-PAGE, at approximately 130 kDa and 65 kDa, respectively. The bioassays conducted to determine the insecticidal activity of the Bn1 isolate were conducted with four distinct insects, using spore-crystal mixtures. We noted that Bn1 has higher toxicity as compared with the standard B. thuringiensis subsp. kurstaki (HD-1). The highest observed mortality was 90% against Malacosoma neustria and Lymantria dispar larvae. Our results show that the B. thuringiensis isolate (Bn1) may prove valuable as a significant microbial control agent against lepidopteran pests.
Keywords
Bacillus thuringiensis; Balaninus nucum; cry gene; Lymantria dispar; Malacosoma neustria;
Citations & Related Records

Times Cited By Web Of Science : 1  (Related Records In Web of Science)
Times Cited By SCOPUS : 2
연도 인용수 순위
1 Adang, M.J. 1991. Bacillus thuringiensis insecticidal crystal proteins: gene structure, action and utilization, p. 3-24. In K. Maramorosch (ed.), Biotechnology for biological control of pests and vectors. CRC Press, Boston, USA
2 Baum, J.A., T.B. Johnson, and B.C. Carlton. 1999. Bacillus thuringiensis: natural and recombinant bioinsecticide products, p. 189-210. In F.R. Hall, N.J. Totowa, and J.J. Menn (eds.), Biopesticides: use and delivery, Humana Press, Totowa, NJ, USA
3 Dean, D.H. and D.R. Zeigler. 1994. Bacillus genetic stock centers and data, 6th ed. Ohio State University Press, Colombus, USA
4 Kellar, B. and G.A. Langenfruch. 1993. Control of coleopteran pests by Bacillus thuringiensis, p. 171-191. In P.F. Entwhistle, J.S. Cory, M.J. Bailey, and S. Higgs (eds.), Bacillus thuringiensis, an environmental biopesticide: theory and practice. Wiley, New York, USA
5 Kurt, A., M. Ozkan, K. Sezen, Z. Demirbag, and G. Ozcengiz. 2005. Cry3Aa11: A new Cry3Aa $\delta$-endotoxin from a local isolate of Bacillus thuringiensis. Biotechnol. Lett. 27, 1117-1121   DOI
6 Minitab, 1997. User's Guide, Release 11. Minitab, State College, PA, USA
7 Porcar, M., J. Iriarte, V.C. Dumanoir, M.D. Ferrandis, M.M. Lecadet, J. Ferre, and P. Caballero. 1999. Identification and characterization of the new Bacillus thuringiensis serovars pirenaica (serotype H57) and iberica (serotype H59). J. Appl. Microbiol. 87, 640-648   DOI   ScienceOn
8 Ritchie, S. 1993. Bacillus thuringiensis subsp. israelensis use in Australia: the opportune moment, p. 111-115. In R.J. Akhurst (ed.), Proceedings of the second canberra Bacillus thuringiensis meeting. CSIRO, Canberra, USA
9 Sharif, F.A. and N.G. Alaeddinoglu. 1988. A rapid and simple method for staining of the crystal protein of Bacillus thuringiensis. J. Ind. Microbiol. 3, 227-229   DOI
10 Aptosoglou, S.G., A. Sivropoulou, and S.I. Koliais. 1997. Plasmid patterns of Bacillus thuringiensis strains and isolates. Microbios 91, 203-214   PUBMED
11 Bohorova, N., A.M. Maciel, R.M. Brito, L. Aguilat, J.E. Ibarra, and D. Hoisington. 1996. Selection and characterization of Mexican strains of Bacillus thuringiensis active against from major lepidopteran maize pests. Entomophaga 41, 153-165   DOI
12 Zhong, C., D.J. Ellar, A. Bishop, C. Johnson, S. Lin, and E.R Hart. 2000. Characterization of a Bacillus thuringiensis $\delta$-endotoxin which is toxic to insects in three orders. J. Invertebr. Pathol. 76, 131-139   DOI   ScienceOn
13 Bernhard, K., P. Jarret, M. Meadows, D.J. Ellis, G.M. Roberts, S. Pauli, P. Rodgers, and H.D. Burges. 1997. Natural isolates of Bacillus thuringiensis: worldwide distribution, characterization, and activity against insects pests. J. Invertebr. Pathol. 70, 59-68   DOI   ScienceOn
14 Donovan, W.P., C.C. Dankocsik, M.P. Gilbert, M.C. Gawron-Burke, R.G. Groat, and B.C. Carlton. 1988. Amino acid sequence and entomocidal activity of the P2 crystal protein. An insect toxin from Bacillus thuringiensis var. kurstaki. J. Biol. Chem. 263, 561-567   PUBMED
15 Becker, N. 1997. Microbial control of mosquitoes: management of the upper rhine mosquito population as a model programme. Parasitol. Today 13, 485-487   DOI   ScienceOn
16 Stackebrandt, E. and B.M. Goebel. 1994. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int. J. Syst. Bacteriol. 44, 846-849   DOI   ScienceOn
17 Ben-Dov, E., A. Zaritsky, E. Dahan, Z. Barak, R. Sinai, R. Manasherob, A. Khameraev, E. Troitskaya, A. Dubitsky, N. Berezina, and Y. Margalith. 1997. Extended screening by PCR for seven crygroup genes from field-collected strains of Bacillus thuringiensis. Appl. Environ. Microbiol. 63, 4883-4890   PUBMED
18 Honigman, A., G. Nedjar-Pazerin, A. Yawetz, U. Oron, S. Schuster, M. Broza, and B. Snek. 1986. Cloning and expression of the Lepidopteran toxin produced by Bacillus thuringiensis in Escherichia coli. Gene 42, 69-77   DOI   ScienceOn
19 Sezen, K. and Z. Demirbağ. 1999. Isolation and insecticidal activity of some bacteria from the hazelnut beetle (Balaninus nucum L.). Appl. Entomol. Zool. 34, 85-89   DOI
20 Sambrook, J., E.F. Fritsch, and T. Maniatis. 1989. Molecular cloning, 2nd ed. Cold Spring, Harbor Laboratory Press, New York, USA
21 Jensen, G.B., A. Wilcks, S.S. Petersen, J. Damgaard, J.A. Baum, and L. Andrup. 1995. The genetic basis of the aggregation system in Bacillus thuringiensis subsp. israelensis is located on the large conjugative plasmid pXO16. J. Bacteriol. 177, 2914-2917   DOI   PUBMED
22 Teakle, R.E. 1994. Present use of, and problems with, Bacillus thuringiensis in Australia. Agric. Ecosyst. Environ. 49, 39-44   DOI   ScienceOn
23 Lereclus, D., A. Delecluse, and M.M. Lecadet. 1993. Diversity of Bacillus thuringiensis toxins and genes, p. 7-70. In P.F. Entwistle, J.S. Cory, M. Bailey, and S. Higgs (eds.), Bacillus thuringiensis an environmental biopesticide: theory and practice. Wiley, New York, USA
24 Schnepf, E., N. Crickmore, J. Van Rie, D. Lereclus, J. Baum, J. Feitelson, D.R. Ziegler, and D.H. Dean. 1998. Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol. Mol. Biol. Rev. 62, 775-806   PUBMED
25 Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685   DOI   ScienceOn
26 Kati, H., K. Sezen, A.O. Beldüz, and Z. Demirbag. 2005. Characterization of a Bacillus thuringiensis subsp. kurstaki strain isolated from Malacosoma neustria L. (Lepidoptera: Lasiocampidae). Biologia 60, 301-305
27 Iriarte, J., V.C. Dumanoir, Y. Bel, M. Porcar, M.D. Ferrandis, M.M. Lecadet, J. Ferre, and P. Caballero. 2000. Characterization of Bacillus thuringiensis ser. balearica (Serotype H48) and ser. navarrensis (Serotype 50): Two novel serovars isolated in Spain. Curr. Microbiol. 40, 17-22   DOI
28 Altschul, S.F., W. Gish, W. Miller, E.W. Myers, and D.J. Lipman. 1990. Basic local alignment search tool. J. Mol. Biol. 215, 403-410   DOI   PUBMED