• Title/Summary/Keyword: hazard ranking

Search Result 38, Processing Time 0.026 seconds

Debris Flow Risk Evaluation and Ranking Method for Drainage Basin adjacent to Road (도로인근 유역의 토석류 위험평가 및 등급화 방안)

  • Kim, Kyung-Suk;Jang, Hyun-Ick
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.279-290
    • /
    • 2010
  • Technical countermeasures against debris flow should be established upon the risk level of the target location. Risk of debris flow should consider the hazard imposed by debris flow and vulnerability of the facilities to debris flow. In this research, we have defined the target location for risk evaluation and suggested scoring method of hazard of debris flow and vulnerability of road to debris flow. By defining risk rank into 6 categories in terms of possibility of damage during rainfall and using the risk scores of 46 debris flow cases, we have suggested risk ranking matrix. The method can be used in ranking the drainage basin adjacent to road by simply determining the hazard with vulnerability score and can be used for planning the debris flow countermeasures.

  • PDF

Assessment of Landfill Hazard Using the Value-Structured Approach (가치구조화기법에 의한 매립지 유해성 등급화)

  • Hong, Sang-Pyo;Kim, Jung-Wuk
    • Journal of Environmental Impact Assessment
    • /
    • v.6 no.1
    • /
    • pp.93-103
    • /
    • 1997
  • LHR(Landfill Site Hazard Ranking Model) was developed for ranking the relative hazard of landfill sites by using the method of value-structured approach. LHR consists of combining a multiattribute decision-making method with a Qualitative risk assessment approach. A pairwise com parisian method was applied to determine weights of landfill site factors related. To determine the hazard of landfill site, hydrogeological factors, waste characteristics factors and receptors factors were evaluated by LHR. LHR can help decision-makers prioritization of remediation of landfill sites through the relatively convenient and concise evaluation method of landfill site features related. LHR focuses mainly on pathways of groundwater and surfacewater for evaluating landfill hazard to receptors including humans. To validiate the applicability of LHR, Nanjido Landfill site, Metropolitan Landfill site, and Hwasung Landfill site were evaluated.

  • PDF

Verification of Landfill Hazard Ranking Model by Sensitivity Analysis (민감도 분석에 의한 LHR 모형의 검증)

  • Hong, Sangpyo;Kim, Jungwuk
    • Journal of Environmental Impact Assessment
    • /
    • v.6 no.2
    • /
    • pp.113-121
    • /
    • 1997
  • LHR(Landfill Hazard Ranking Model) was developed for assessing the relative hazard of landfills by using the method of value-structured approach. LHR consists of combining a multiattribute decision-making method with a qualitative risk assessment approach. A pairwise comparision method was applied to determine weights of landfill factors related. To prove the validity of weights allocation of landfill hazard evaluation factors, sensitivity analysis was applied. Firstly, the impact on landfill hazard score according to variations of weights of landfill hazard factors was analyzed. Secondly, the impact on landfill hazard score according to conditions change of landfill hazard factors was analyzed. As a result of sensitivity analysis, LHR composite scores are largely influenced by some factors following sequential order such as waste volume, proximity to sensitive environments, containment facilities, distance from drinking water supplies, and waste toxicity. The relative order of landfill hazard evaluated by LHR is not influenced by the weights change of individual factors. Therefore, LHR seems to be a credible model to determine priorities of landfill remediation based on the vulnerability of water resources.

  • PDF

A Study on the Selection of Candidates for Substances Subject to Permission Using Chemicals Ranking and Scoring (CRS) (화학물질 우선순위 선정기법(CRS)을 활용한 허가대상 후보물질 선정 연구)

  • Kim, Hyo-dong;Park, Kyo-shik
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.32 no.3
    • /
    • pp.253-267
    • /
    • 2022
  • Objectives: This study was performed to check whether the CRS (Chemical Ranking and Scoring) system is appropriate as a method to determine substances as candidates for substances subject to permission and to apply this system to the selection of candidates for substances subject to permission. Methods: A risk score was obtained by multiplying the hazard score and the exposure score and then ranking them. The hazard sub-indicators are carcinogenicity, germ cell mutagenicity, reproductive toxicity, specific target organ toxicity-repeated exposure, respiratory sensitization and endocrine disrupting chemicals. Exposure sub-indicators are persistence, bioaccumulation and emission volume. Sensitivity analysis was performed for missing values. Correlation analysis and multivariable linear regression analysis were performed among hazard, exposure and risk in order to confirm that CRS was an appropriate method. Results: As a result of the sensitivity analysis on missing values, it was confirmed that the effect on the risk ranking was not sensitive. Correlation and regression analysis confirmed that exposure had a greater effect on risk than hazard. Conclusions: The CRS system, which derives a risk score using a hazard and exposure score, is judged to be appropriate as a method for the selection of preliminary of candidates for substances subject to permission. Benzene, cadmium, nickel, and cobalt were selected as priority candidates for substances subject to permission.

Prioritization decision for hazard ranking of water distribution network by cluster using the Entropy-TOPSIS method (Entropy-TOPSIS 기법을 활용한 군집별 상수도관망 위험도 관리순위 결정)

  • Park, Haekeum;Kim, Kibum;Hyung, Jinseok;Kim, Taehyeon;Koo, Jayong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.35 no.6
    • /
    • pp.517-531
    • /
    • 2021
  • The water supply facilities of Korea have achieved a rapid growth, along with the other social infrastructures consisting a city, due to the phenomenon of urbanization according to economic development. Meanwhile, the level of water supply service demanded by consumer is also steadily getting higher in keeping with economic growth. However, as an adverse effect of rapid growth, the quantity of aged water supply pipes are increasing rapidly, Bursts caused by pipe aging brought about an enormous economic loss of about 6,161 billion won as of 2019. These problems are not only worsening water supply management, also increasing the regional gap in water supply services. The purpose of this study is to classify hazard evaluation indicators and to rank the water distribution network hazard by cluster using the TOPSIS method. In conclusion, in this study, the entropy-based multi-criteria decision-making methods was applied to rank the hazard management of the water distribution network, and the hazard management ranking for each cluster according to the water supply conditions of the county-level municipalities was determined according to the evaluation indicators of water outage, water leakage, and pipe aging. As such, the hazard ranking method proposed in this study can consider various factors that can impede the tap water supply service in the water distribution network from a macroscopic point of view, and it can be reflected in evaluating the degree of hazard management of the water distribution network from a preventive point of view. Also, it can be utilized in the implementation of the maintenance plan and water distribution network management project considering the equity of water supply service and the stability of service supply.

Development of Preliminary Hazard Ranking System for Underground Storage Tanks Using Geographic Information System (GIS) (GIS를 이용한 지하저장탱크의 위해성 예비평가체계 개발)

  • 황상일;이상훈;이동수
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.4 no.3
    • /
    • pp.122-129
    • /
    • 1997
  • Spills or leaks of hazardous organic. compounds from underground storage tanks (USTs) are common contaminant sources of soil and groundwater. It would aid in managing USTs to assess and rank the potential environmental hazard posed by the USTs. Therefore, a preliminary hazard ranking system of USTs is developed in this study. The system is combined with GIS and consists of five steps: 1) selection of significant factors, 2) determination of the hierarchy of the factors. 3) determination of the weights, 4) calculation of the potential hazard, and 5) hazard assessment. The system is applied to the gas stations in Kwanak-gu, Seoul. The results indicate that the gas stations can be categorized in three groups as highly hazardous, less highly hazardous, and weakly hazardous. Seven gas stations belong to the highly hazardous group. Through the sensitivity analysis, four stations appear to possess high hazard potentials regardless of weights assigned to the factors. It appears that a user can make flexible application of the hazard ranking system with the user's experience and particular purposes. However, the system still needs validations against field survey data.

  • PDF

Development of Natural Hazard Risk Map using Insured Claim Payouts and Its Application (보험 손실액을 활용한 자연재해 위험 지도 개발 및 적용방안 연구)

  • Kim, Ji-Myong;Park, Young Jun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.05a
    • /
    • pp.257-258
    • /
    • 2015
  • The amount of damages caused by natural hazards is consistently growing due to the unusual weather and extreme events. At the same time, property damage by natural hazards is rapidly increasing as well. Hence, we need systematic anti-disaster activities and consulting that can react to such a situation. To address these needs, we investigated and analyzed insured claim payouts from natural hazards by administrative area, and calculate the risk index utilizing GIS. According to the index, this map is identifying the areas of greatest natural hazard risk. The ranking of natural disaster vulnerability based on the risk index, and risk grades were divided into five based on the ranking. This map integrates the natural hazard losses to assist in comprehensive and effective loss prevention activities using analysis of regional loss claims from natural hazards. Moreover, this map can be as utilized as loss mitigation and prevention activities to verify the distribution of exposure and hazards.

  • PDF

Comparative Study of Exposure Potential and Toxicity Factors used in Chemical Ranking and Scoring System (화학물질 우선순위선정 시스템에서 고려되는 노출.독성인자 비교연구)

  • An, Youn-Joo;Jeong, Seung-Woo;Kim, Min-Jin;Yang, Chang-Yong
    • Environmental Analysis Health and Toxicology
    • /
    • v.24 no.2
    • /
    • pp.95-105
    • /
    • 2009
  • Chemical Ranking and Scoring (CRS) system is a useful tool to screen priority chemicals of large body of substances. The relative ranking of chemicals based on CRS system has served as a decision-making support tools. Exposure potential and toxicity are significant parameters in CRS system, and there are differences in evaluating those parameters in each CRS system. In this study, the parameters of exposure potential, human toxicity, and ecotoxicity were extensively compared. In addition the scoring methods in each parameter were analyzed. The CRS systems considered in this study include the CHEMS-1 (Chemical Hazard Evaluation for Management Strategies), SCRAM (Scoring and Ranking Assessment Model), EURAM (European Union Risk Ranking Method), ARET (Accelerated Reduction/Elimination of Toxics), and CRS-Korea. An comparative analysis of the several CRS systems is presented based on their assessment parameters and scoring methods.

Identifying Spatial Hazard Ranking Using Multicriteria Decision Making Techniques (다기준 의사결정기법을 이용한 공간위험 순위산정)

  • Chung, Eun-Sung;Lee, Kil-Seong
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.12
    • /
    • pp.969-983
    • /
    • 2007
  • This study developed a ten-step procedure of integrated watershed management (IWM) for sustainability to rehabilitate the distorted hydrologic cycle and identified spatial hazard ranking(step 2). Spatial hazard indices, Potential flood damage (PFD), potential streamflow depletion (PSD), potential water quality deterioration (PWQD), and watershed evaluation index (WEI) were developed using multi-criteria decision making (MCDM) techniques and sustainability evaluation concept(pressure-state-response model). The used MCDM techniques are composite programming, compromise programing, Regime method, and EVAMIX approach which are classified by data availability and objectives (prefeasibility and feasibility).