• Title/Summary/Keyword: hazard monitoring

Search Result 288, Processing Time 0.03 seconds

Review on asbestos analysis (석면 분석방법에 대한 고찰)

  • Ham, Seung hon;Hwang, Sung Ho;Yoon, Chungsik;Park, Donguk
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.19 no.3
    • /
    • pp.213-232
    • /
    • 2009
  • This document was prepared to review and summarize the analytical methods for airborne and bulk asbestos. Basic principles, shortcomings and advantages for asbestos analytical instruments using phase contrast microscopy(PCM), polarized light microscopy(PLM), X-ray diffractometer (XRD), transmission electron microscopy(TEM), scanning electron microscopy(SEM) were reviewed. Both PCM and PLM are principal instrument for airborne and bulk asbestos analysis, respectively. If needed, analytical electron microscopy is employed to confirm asbestos identification. PCM is used originally for workplace airborne asbestos fiber and its application has been expanded to measure airborne fiber. Shortcoming of PCM is that it cannot differentiate true asbestos from non asbestos fiber form and its low resolution limit ($0.2{\sim}0.25{\mu}m$). The measurement of airborne asbestos fiber can be performed by EPA's Asbestos Hazard Emergency Response Act (AHERA) method, World Health Organization (WHO) method, International Standard Organization (ISO) 10312 method, Japan's Environmental Asbestos Monitoring method, and Standard method of Indoor Air Quality of Korea. The measurement of airborne asbestos fiber in workplace can be performed by National Institute for Occupational Safety and Health (NIOSH) 7400 method, NIOSH 7402 method, Occupational Safety and Health Administration (OSHA) ID-160 method, UK's Health and Safety Executive(HSE) Methods for the determination of hazardous substances (MDHS) 39/4 method and Korea Occupational Safety and Health Agency (KOSHA) CODE-A-1-2004 method of Korea. To analyze the bulk asbestos, stereo microscope (SM) and PLM is required by EPA -600/R-93/116 method. Most bulk asbestos can be identified by SM and PLM but one limitation of PLM is that it can not see very thin fiber (i.e., < $0.25{\mu}m$). Bulk asbestos analytical methods, including EPA-600/M4-82-020, EPA-600/R-93/116, OSHA ID-191, Laboratory approval program of New York were reviewed. Also, analytical methods for asbestos in soil, dust, water were briefly discussed. Analytical electron microscope, a transmission electron microscope equipped with selected area electron diffraction (SAED) and energy dispersive X-ray analyser(EDXA), has been known to be better to identify asbestiform than scanning electron microscope(SEM). Though there is no standard SEM procedures, SEM is known to be more suitable to analyze long, thin fiber and more cost-effective. Field emission scanning electron microscope (FE-SEM) imaging protocol was developed to identify asbestos fiber. Although many asbestos analytical methods are available, there is no method that can be applied to all type of samples. In order to detect asbestos with confidence, all advantages and disadvantages of each instrument and method for given sample should be considered.

A Study on the Risk of Lightning in Special Structures and its Verification Method (특수 구조물의 낙뢰 위험도와 검증 방안에 관한 연구)

  • Yoo, Jeong Hyun;Kim, Hei Sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.6
    • /
    • pp.664-668
    • /
    • 2018
  • Free-standing structures that are especially high are more likely to receive brain attacks caused by lightning. Since special structures are generally part of national industrial structures, lightning strikes mostly cause socio-economic damage. Lightning protection facilities are installed to prevent such lightning damage, but in 2015, support cables on West Sea bridges were hit by lightning, causing a lot of economic damage. Accordingly, the design of a lightning protection system shall establish protective measures after analyzing the risk of debris falling onto the structure. In this thesis, lightning strikes are analyzed directly in relation to the modeling system that operates the actual information collection system for lightning strikes, depending on the location of the tall, free-standing structures, and practical lightning hazard information is provided by a meteorological station. In addition, we propose monitoring and applying a probability correction rate to the calculation of the lightning risk based on the number of lightning strikes directly reaching the ground in order to obtain an effective lightning risk assessment.

Monitoring of Cd, Hg, Pb, and As and Risk Assessment for Commercial Medicinal Plants (국내 유통 약용작물 중 카드뮴, 수은, 납, 비소 함량 모니터링 및 위해성 평가)

  • Kim, Hyuck-Soo;Kim, Kwon-Rae;Hong, Chang-Oh;Go, Woo-Ri;Jeong, Seon-Hee;Yoo, Ji-Hyock;Cho, Nam-Jun;Hong, Jin-Hwan;Kim, Won-Il
    • Korean Journal of Environmental Agriculture
    • /
    • v.34 no.4
    • /
    • pp.282-287
    • /
    • 2015
  • BACKGROUND: The current study was carried out to investigate Cd, Hg, Pb and As contaminations in 222 commercial medicinal plants and to estimate the potential health risk through dietary intake of commercial medicinal plants in Korea.METHODS AND RESULTS: The Cd, Hg, Pb, and As in medicinal plants were analyzed by ICP/MS and mercury analyzer.The potential health risk was estimated using risk assessment tools. Total amount of Cd in medicinal plants with 29% samples exceeded the standard limit legislated in 'Pharmaceutical Affairs Act' while all plant samples were lower than the standard limit value for As, Hg, and Pb. However, when applying the standard limit for root vegetable (fresh weight) in the Food Sanitation Act, four samples exceeded the standard limit of Pb. For health risk assessment, the values of cancer risk probability were 0.3~5.9×10-7which were less than the acceptable cancer risk of 10-6~10-4for regulatory purpose. Also, Hazard quotientvalues were lower than 1.0.CONCLUSION: Therefore, these results demonstrated that human exposure to Cd, Hg, Pb, and As through dietary intake of commercial medicinal plants might notcause adverse health effects although some medicinal plants were higher than the standard limit values for Cd and Pb.

Human Health Risk Assessment of Benzene from Industrial Complexes of Chungcheong and Jeonla Province (충청·전라지역 산업단지 주변지역에서의 벤젠 인체 위해성 평가)

  • Jang, Yong-Chul;Lee, Sungwoo;Shin, YongSeung;Kim, Heekap;Lee, Jonghyun
    • Journal of Environmental Impact Assessment
    • /
    • v.20 no.4
    • /
    • pp.497-507
    • /
    • 2011
  • This research studied human health risk assessment of benzene from industrial complexes of Chungcheong Province (Seosan industrial complex) and Jeonla Province (Iksan industrial complex and Yeosoo industrial complex). The residents near the industrial complexes areas can be often exposed to volatile organic compounds (e.g., benzene, toluene, xylenes) through a number of exposure pathways, including inhalation of the organic pollutant via various environmental matrices (air, water and soil), contaminated water, and soil intake. Benzene is well known to be a common carcinogenic and toxic compound that is produced from industrial and oil refinery complexes. In this study, a number of samples from water, air, and soil were taken from the residential settings and public school zones located near the industrial complex sites. Based on the carcinogenic risk assessment, the risk estimates were slightly above $10{\times}10^{-6}$ at all three industrial sites. According to deterministic risk assessment, inhalation was the most important route. The distribution of benzene in the environment would be dependent on vapor pressure, and the physical property influencing the extent of the potential risks. Non-carcinogenic risk assessment of benzene shows that the values of Hazard Index(HI) were much lower than 1.0 at all industrial complexes. Therefore, benzene was not a cause of concern in terms of non-carcinogenic risk posed to the residents near the sites. When compared to probabilistic risk assessment, the CTE(central tendency exposure) cancer risk values of deterministic risk assessment were close to the mean values predicted by the probabilistic risk assessment. The RME(reasonable maximum exposure) values fell within the range of 95% to 99.9% estimated by the probabilistic risk assessment. Since the values of carcinogenic risk assessment were higher than $10{\times}10^{-6}$, further detailed monitoring and refined risk assessment for benzene may be warranted to estimate more reliable and potential inhalation risks to receptors near the industrial complexes.

Microbial Contamination Levels of Ginseng and Ginseng Products Distributed in Korean Markets (국내 유통 중인 인삼 및 인삼 제품류의 미생물 오염도 평가)

  • Shim, Won-Bo;Kim, Jeong-Sook;Kim, Se-Ri;Park, Ki-Hwan;Chung, Duck-Hwa
    • Journal of Food Hygiene and Safety
    • /
    • v.28 no.4
    • /
    • pp.319-323
    • /
    • 2013
  • The objective of this study was to investigate the microbial contamination levels of ginseng and ginseng products distributed in markets. A total of 81 ginseng and ginseng products samples (fresh ginseng 37, white ginseng 15, red ginseng 15, red ginseng beverage 14) were tested to analyze sanitary indicator bacteria (total aerobic bacteria, coliforms and Escherichia coli), major foodborne pathogens, and fungi. The contamination levels of total aerobic bacteria and coliforms were in the range of 3.19 to 7.02 log CFU/g for fresh ginseng, 0.25 to 7.31 log CFU/g for white ginseng, 0 to 2.89 log CFU/g for red ginseng and 0 to 1.70 log CFU/mL for red ginseng beverage. In case of major foodborne pathogens, B. cereus was detected at levels of 0.50 to 2.41 log CFU/g in samples except red ginseng beverage. Fungi was detected at levels of 2.41 log CFU/g in fresh ginseng, the contamination levels of the other ginseng products samples were lower than 1 log CFU/g or mL. These results indicate that the ginseng and ginseng products were comparatively safe with respect to microbiological hazard.

A Study on Smart Factory System Design for Screw Machining Management (나사 가공 관리를 위한 스마트팩토리 시스템 설계에 관한 연구)

  • Lee, Eun-Kyu;Kim, Dong-Wan;Lee, Sang-Wan;Kim, Jae-joong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.329-331
    • /
    • 2018
  • In this paper, we propose a monitoring system that starts with the supply of raw materials for threading, is processed into a lathe machine, and checks for defects of the product are automatically performed by the robot with Smart Factory technology through assembly and disassembly. Completion check according to the production instruction quantity and production instruction is made by checking the production status according to whether or not the raw material is worn by the displacement sensor, and checking the pitch and the contour of the processed female and male to determine OK and NG. The robotic system acts as a relay for loading and unloading of raw materials, pallet transfer, and overall process, and it acts as an intermediary for organically driving. The location information of the threaded products is collected by using the non-contact wireless tag and the energy saving system Production efficiency and utilization rate were checked. The environmental sensor collects the air-conditioning environment data (temperature, humidity), measures the temperature and humidity accurately, and checks the quality of product processing. It monitors and monitors the driving hazard level environment (overheating, humidity) of the product. Controls for CNC and robot module PLC as a heterogeneous system.

  • PDF

Toxicity Monitoring and Assessment of Nanoparticles Using Bacteria (박테리아를 이용한 나노입자의 독성평가 및 탐지)

  • Hwang, Ee-Taek;Lee, Jung-Il;Sang, Byoung-In;Gu, Man-Bock
    • KSBB Journal
    • /
    • v.22 no.6
    • /
    • pp.414-420
    • /
    • 2007
  • Nanomaterials have been applied to various fields due to their advantageous characteristics such as high surface area, rapid diffusion, high specific surface areas, reactivity in liquid or gas phase, and a size close to biomacromolecules. Up to date, increased manufacturing and frequently use of the materials, however, revoke people's concerns on their hazard impact including toxicity the materials. Many research groups have carried out different protocols to evaluate toxic effects of nanomaterilas on different organisms, and consequently, nanomaterials are known to cytotoxicity. In this paper, we reviewed some of the most reports on toxic effects of several nanoparticles specifically on bacteria. There are numbers of reports focused on antibacterial effect of nanoparticles based on bacterial cell viability. Therefore, the application of each nanomaterial should be concerned with its toxicity and its toxic effect should be evaluated in terms of concentrations and sizes of the nanomaterials used, prior to use of a nanomaterial.

Analysis of toluene diisocyanate of adhesives in food contact materials by GC/MS (GC/MS에 의한 식품 포장재에 사용되는 접착제의 Toluene diisocyanate 분석)

  • Oh, Chang-Hwan;Kim, Ji-Young;Jo, Cheon-Ho;Park, Heera;Kwun, Ki-Sung;Kim, Meehye;Myung, Seung-Woon
    • Analytical Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.511-519
    • /
    • 2005
  • A method for determination of toluene diisocyanates (TDI) in toluene diisocynate (TDI)-based polyurethane (PUR) packing material was investigated, and also the migration of TDI to food was studied. TDI was extracted using food simulants such as n-haptane and 4% aqueous acetic acid. The determinations were performed using gas chromatography/mass spectrometry (GC/MS). One of major components for polyurethane, toluene diisocyanates, were detected in ten samples among twenty six food contact materials with the concentration range of $0.51{\sim}60.88{\mu}g/ml$. However the highest extracted amount was just 0.7% of $60.88{\mu}g/ml$ if the contact surface of food packing for extracting liquid was limited to the outer layer without exposure of the cutting edge of food packing multi-layers. The result of this study and the analysis method for TDI diisocyanate will be very useful for further study about food contact material, and the monitoring result could be used for evaluating the safety of food contact material before it is to be used for food, preservation.

A Health Risk Assessment of Tributyltin Compounds in Fishes and Shellfishes in Korea. (국내 유통중인 어패류 섭취에 따른 유기주석화합물의 인체 위해성 평가)

  • Choi, Shi-Nai;Choi, Hye-Kyung;Song, Hoon;Oh, Chang-Hwan;Park, Jong-Sei
    • Journal of Food Hygiene and Safety
    • /
    • v.17 no.3
    • /
    • pp.137-145
    • /
    • 2002
  • Tributyltin compounds have been increasingly used in the form of plastic stabilizers, catalytic agents, industrial agricultural biocides, antifouling paint, and pesticides. Among these organotin compounds, large amounts of tributyltin(TBT) and triphenyltin(TPT) have been used as antifouling agents because they have a superior ability to prevent marine organism from being encrusted on ship bottoms and in culturing nets. Environmental pollution by these organotin compounds in the aquatic environment were undertaken. The international maritime Organization's established a provisional tolerable daily intake(TDI) of 1.6[micro]g TBTO/kg/ B.W. The Food and Agiculture Organization (of the United Nations)/world Health Organization's (FAO/WHO) proposed a TDI of 0.5ug TPT/kg BW/d. This study is conducted monitoring of TBT on seafoods in Korea and risk assessment for exposure on TBT in seafoods. Total hazard index(using Reference Dose : 0.3 ug TBTO/kg B.W/day) of intake exposure on seafoods is 0.04 as the 50th percentile, 0.08 as the 95th percentile. This value is estimated by Monte-Carlo simulation using Crystal Ball(Decisioneering Co., 2001).

Health and Economic Burden Attributable to Particulate Matter in South Korea: Considering Spatial Variation in Relative Risk (지역간 상대위험도 변동을 고려한 미세먼지 기인 질병부담 및 사회경제적 비용 추정 연구)

  • Byun, Garam;Choi, Yongsoo;Gil, Junsu;Cha, Junil;Lee, Meehye;Lee, Jong-Tae
    • Journal of Environmental Health Sciences
    • /
    • v.47 no.5
    • /
    • pp.486-495
    • /
    • 2021
  • Background: Particulate matter (PM) is one of the leading causes of premature death worldwide. Previous studies in South Korea have applied a relative risk calculated from Western populations when estimating the disease burden attributable to PM. However, the relative risk of PM on health outcomes may not be the same across different countries or regions. Objectives: This study aimed to estimate the premature deaths and socioeconomic costs attributable to long-term exposure to PM in South Korea. We considered not only the difference in PM concentration between regions, but also the difference in relative risk. Methods: National monitoring data of PM concentrations was obtained, and missing values were imputed using the AERMOD model and linear regression model. As a surrogate for relative risk, hazard ratios (HRs) of PM for cardiovascular and respiratory mortality were estimated using the National Health Insurance Service-National Sample Cohort. The nation was divided into five areas (metropolitan, central, southern, south-eastern, and Gangwon-do Province regions). The number of PM attributable deaths in 2018 was calculated at the district level. The socioeconomic cost was derived by multiplying the number of deaths and the statistical value of life. Results: The average PM10 concentration for 2014~2018 was 45.2 ㎍/m3. The association between long-term exposure to PM10 and mortality was heterogeneous between areas. When applying area-specific HRs, 23,811 premature deaths from cardiovascular and respiratory disease in 2018 were attributable to PM10 (reference level 20 ㎍/m3). The corresponding socioeconomic cost was about 31 trillion won. These estimated values were higher than that when applying nationwide HRs. Conclusions: This study is the first research to estimate the premature mortality caused by long-term exposure to PM using relative risks derived from the national population. This study will help precisely identify the national and regional health burden attributed to PM and establish the priorities of air quality policy.