• Title/Summary/Keyword: harvesting efficiency

Search Result 352, Processing Time 0.025 seconds

Barley Growth and Labor-Saving Efficiency as Using Barley Seeder Synchronized with Rice Harvesting (벼 수확동시 보리파종기 이용에 따른 보리생육특성 및 생력효과)

  • 김양길;이중호;서재환;박종철
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.49 no.3
    • /
    • pp.179-183
    • /
    • 2004
  • This study was conducted to investigate the effects of using barley seeder attached to rice harvest combine that could be used in rice harvesting and barley seeding simultaneously on the growth characteristics of barley and labor-saving efficiency. In developed seeding system, burley seeding was earlier about 5 days than in the conventional system, because of conducting rice Harvesting and barley seeding simultaneously. The germination of barley seed after seeding was protected from drought damage by the rice straw covering. Among the growth characteristics of barley using developed seeding system, the number of spikes per m$^2$ was lower than that of conventional system, but others showed longer culm length, hove kernel numbers per spike and heavier 1,000 kernel weight than those of conventional system. Developed seeding system resulted in about 57% labor-saving efficiency compared with conventional system. The cost of whole works from seeding to harvest of barley was saved about 8% compared with conventional system. A total of income increased about 16% than that of conventional system.

Novel Extended π-Conjugated Dendritic Zn(II)-porphyrin Derivatives for Dye-sensitized Solar Cell Based on Solid Polymeric Electrolyte: Synthesis and Characterization

  • Kang, Min-Soo;Oh, Jae-Buem;Roh, Soo-Gyun;Kim, Mi-Ra;Lee, Jin-Kook;Jin, Sung-Ho;Kim, Hwan-Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.1
    • /
    • pp.33-40
    • /
    • 2007
  • We have designed and synthesized three Zn(II)-porphyrin derivatives, such as Zn(II) porphyrin ([G-0]Zn-P1) and aryl ether-typed dendron substituted Zn(II)-porphyrin derivatives ([G-1]Zn-P1 and [G-1]Zn-P-CN1). Their chemical structures were characterized by 1H-NMR, FT-IR, UV-vis absorption, EI-mass, and MALDI-TOF mass spectroscopies. Their electrochemical properties were studied by cyclic voltammetry measurement. These Zn(II)-porphyrin derivatives have been used to fabricate dye-sensitized solar cells (DSSCs) based on solid polymeric electrolytes as dye sensitizers and their device performances were evaluated by comparing with that of a standard Ru(II) complex dye. [G-1]Zn-P-CN1 showed the enhanced power conversion efficiency than those of other porphyrin derivatives, as expected. Short-circuit photocurrent density (Jsc), open-circuit voltage (Voc), fill factor (FF), and power conversion efficiency (η) of solid-typed DSSC for [G-1]Zn-P-CN1 were evaluated to be Jsc = 11.67 mA/cm2, Voc = 0.51 V, FF = 0.46, and η = 2.76%, respectively.

Matching game based resource allocation algorithm for energy-harvesting small cells network with NOMA

  • Wang, Xueting;Zhu, Qi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.11
    • /
    • pp.5203-5217
    • /
    • 2018
  • In order to increase the capacity and improve the spectrum efficiency of wireless communication systems, this paper proposes a rate-based two-sided many-to-one matching game algorithm for energy-harvesting small cells with non-orthogonal multiple access (NOMA) in heterogeneous cellular networks (HCN). First, we use a heuristic clustering based channel allocation algorithm to assign channels to small cells and manage the interference. Then, aiming at addressing the user access problem, this issue is modeled as a many-to-one matching game with the rate as its utility. Finally, considering externality in the matching game, we propose an algorithm that involves swap-matchings to find the optimal matching and to prove its stability. Simulation results show that this algorithm outperforms the comparing algorithm in efficiency and rate, in addition to improving the spectrum efficiency.

A High Efficient Piezoelectric Windmill using Magnetic Force for Low Wind Speed in Wireless Sensor Networks

  • Yang, Chan Ho;Song, Yewon;Jhun, Jeongpil;Hwang, Won Seop;Hong, Seong Do;Woo, Sang Bum;Sung, Tae Hyun;Jeong, Sin Woo;Yoo, Hong Hee
    • Journal of the Korean Physical Society
    • /
    • v.73 no.12
    • /
    • pp.1889-1894
    • /
    • 2018
  • An innovative small-scale piezoelectric energy harvester has been proposed to gather wind energy. A conventional horizontal-axis wind power generation has a low generating efficiency at low wind speed. To overcome this weakness, we designed a piezoelectric windmill optimized at low-speed wind. A piezoelectric device having high energy conversion efficiency is used in a small windmill. The maximum output power of the windmill was about 3.14 mW when wind speed was 1.94 m/s. Finally, the output power and the efficiency of the system were compared with a conventional wind power system. This work will be beneficial for the piezoelectric energy harvesting technology to be applied to the real world such as wireless sensor networks (WSN).

A study on the havesting process and operating behaviour of working ships for farming laver (김 양식장 채취선의 운항거동과 수확조업에 관한 연구)

  • KIM, Ok-sam;MIN, Eun-bi;HWANG, Doo-jin
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.56 no.3
    • /
    • pp.223-229
    • /
    • 2020
  • We analyzed the cutting mechanism of laver harvesting machine in the sea area near Gooam Port in Goheung, Jeollanam-do, and investigated the change and efficiency of laver collecting operation in the working ship. The laver working ship slides uniformly from the bow to the upper part of the laver collecting machine on the deck and cuts the wet laver attached to the bottom of the net at the blade of the havesting machine. The laver farming net, which was loaded with laver turrets on the deck by gravity and collected primitives, consisted of a ship structure that led to the stern side and into the sea. The working ship operation is in harvesting process while driving in a S-shape that is separated by one space to efficiently collect the laver net. During laver working ship operation, the speed was 0.51 m/s in the access stage, 0.56 m/s in the havesting stage, and 0.52 m/s in the exit stage. Considering the cutting edge life and production efficiency of the laver harvesting machine, it is appropriate to harvest 1.15 to 1.26 kg/rpm by operating at a rotational speed of about 700 to 800 rpm rather than forcibly harvesting the product at high speed. On the deck of the working ship, 959.7 kg of starboard and 1048.7 kg of center were 964.7 kg of port side. Based on the starboard, 9.3% of the central part and 0.5% of the port side appeared. The reason for this was due to the difference in harvest time according to the turning direction of the working ship.

Efficient RF Energy Harvesting Algorithm based on Frequency Selective Fading Map (주파수 선택적 페이딩 맵 기반 효율적 무선 에너지 하비스팅 알고리즘)

  • Park, Ji Ho;Hwang, Yu Min;Song, Yu Chan;Kim, Jin Young
    • Journal of Satellite, Information and Communications
    • /
    • v.10 no.2
    • /
    • pp.24-29
    • /
    • 2015
  • Recently, with developments of various networks, devices and various services, energy efficiency has become one of the most crucial issues with respect to sustainability of mobile devices. For connecting to networks seamlessly to offer services, a scenario of RF energy harvesting which supplies energy to wireless devices with RF signals is assumed. To increase the efficiency of RF energy harvesting, this paper proposes a RF energy harvesting algorithm which is based upon a frequency selective fading map. Through the algorithm, a receiver of mobile device can get fading information at each frequency and select a frequency which has the best quality. At the end, the simulation result demonstrates its superiority by showing a 4.45dB improvement in comparison to a deep fading frequency point.

Comparison of Rhizome Harvesting Methods Saururus chinensis (삼백초의 기계수확 효율비교)

  • 남상영;김익제;김인재;김민자;이철희;김태수;손석용
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.47 no.3
    • /
    • pp.157-160
    • /
    • 2002
  • This study was carried out to the harvesting efficiency of equipment used fer harvesting of rhizomes of Saururus chinensis Bail. Labor-saving efficiency showed 60-67% enhancement by using tillage operations with power tiller, digger attached to power tiller, and digger attached to tractor compared with manual harvest. Loss percentage of rhizomes by harvesting equipments was 2.2-8.8% lower than by manual harvest. Fresh rhizome yield and income index were increased 3-10% and 13-27% respectively by harvesting equipments, showing the highest yield and index in digger attached to tractor, Thus, digger attached to tractor showed the most effective harvest equipment for Saururus chinensis rhizome.

Performance Analysis of Relay applied to Energy Harvesting (에너지 하베스팅을 적용한 중계기의 성능 분석)

  • Kim, Tae-Wook;Kong, Hyung-Yun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.5
    • /
    • pp.67-72
    • /
    • 2014
  • In this paper, an energy harvesting scheme is applied in the cooperative communication. The proposed scheme uses an energy harvesting relay in which the relay harvests the energy from the source node and transfers to the power form in forwarding the received data to the destination node. The well-known maximal ratio combining (MRC) technique is applied to increase the diversity gain at the destination. Therefore, with applying the proposed energy harvesting scheme, the limited power at the relay is solved, and the operation efficiency of the network and the mobile devices is improved. Finally, performance of the proposed protocol is analyzed in terms of bit error rate, outage probability, power collection efficiency.

Multi-Source Based Energy Harvesting Architecture for IoT and Wearable System (IoT 및 웨어러블 시스템을 위한 멀티 소스 기반 에너지 수확 구조)

  • Park, Hyun-Moon;Kwon, Jin-San;Kim, Byung-Soo;Kim, Dong-Sun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.1
    • /
    • pp.225-234
    • /
    • 2019
  • By using the Triboelectric nanogenerators, known as TENG, we can take advantages of high conversion efficiency and continuous power output even with small vibrating energy sources. Nonlinear energy extraction techniques for Triboelectric vibration energy harvesting usually requires synchronized active electronic switches in most electronic interface circuits. This study presents a nonlinear energy harvesting with high energy conversion efficiency to harvest and save energies from human active motions. Moreover, the proposed design can harvest and store energy from sway motions around different directions on a horizontal plane efficiently. Finally, we conducted a comparative analysis of a multi-mode energy storage board developed by a silicon-based piezoelectricity and a transparent TENG cell. As a result, the experiment showed power generation of about 49.2mW/count from theses multi-fully harvesting source with provision of stable energy storages.

Design of an Energy Harvesting Full-Wave Rectifier Using High-Performance Comparator (고성능 비교기를 이용한 에너지 하베스팅 전파정류회로 설계)

  • Lee, Dong-Jun;Yu, Chong-Gun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.429-432
    • /
    • 2017
  • In this paper, a full - wave rectifying harvesting circuit with a high-performance comparator is designed. Designed circuits are divided into Negative Voltage Converter and Active Diode stages. The comparator included in the active diode stage is implemented as a 3-stage type and divided into pre-amplification, decision circuit, and output buffer stages. The main purpose of this comparator is to reduce the propagation delay and improve the voltage and power efficiency of the harvesting circuit. The proposed circuit is designed with magna $0.35{\mu}m$ CMOS process and its operation is verified by simulation. The chip area of the designed energy harvesting circuit is $900{\mu}m{\times}712{\mu}m$.

  • PDF