• Title/Summary/Keyword: harmonic oscillator

Search Result 175, Processing Time 0.024 seconds

Vital Sign Sensor Based on Second Harmonic Frequency Drift of Oscillator (발진기의 2채배 고조파 주파수 천이를 이용한 생체신호 측정센서)

  • Ku, Ki-Young;Hong, Yunseog;Lee, Hee-Jo;Yun, Gi-Ho;Yook, Jong-Gwan;Kim, Kang-Wook
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.3
    • /
    • pp.299-306
    • /
    • 2016
  • In this paper, a vital sign sensor based on impedance variation of resonator is proposed to detect the respiration and heartbeat signals within near-field range as a function of the separation distance between resonator and subject. The sensor consists of an oscillator with a built-in planar type patch resonator, a diplexer for only pass the second harmonic frequency, amplifier, SAW filter, and RF detector. The cardiac activity of a subject such as respiration and heartbeat causes the variation of the oscillation frequency corresponding impedance variation of the resonator within near-field range. The combination of the second harmonic oscillation frequency deviation and the superior skirt frequency of the SAW filter enables the proposed sensor to extend twice detection range. The experimental results reveal that the proposed sensor placed 40 mm away from a subject can reliably detect respiration and heartbeat signals.

Hartley-VCO Using Linear OTA-based Active Inductor

  • Jeong, Seong-Ryeol;Chung, Won-Sup
    • Journal of IKEEE
    • /
    • v.19 no.4
    • /
    • pp.465-471
    • /
    • 2015
  • An LC-tuned sinusoidal voltage-controlled oscillator (VCO) using temperature-stable linear operational transconductance amplifiers (OTAs) is presented. Its architecture is based on Hartley oscillator configuration, where the inductor is active one realized with two OTAs and a grounded capacitor. Two diode limiters are used for limiting amplitude. A prototype oscillator built with discrete components exhibits less than 3.1% nonlinearity in its current-to-frequency transfer characteristic from 1.99 MHz to 39.14 MHz and $220ppm/^{\circ}C$ frequency stability to the temperature drift over 0 to $75^{\circ}C$. The total harmonic distortion (THD) is as low as 4.4 % for a specified frequency-tuning range. The simulated phase noise of the VCO is about -108.9 dBc/Hz at 1 MHz offset frequency in frequency range of 0.4 - 46.97 MHz and property of phase noise of VCO is better than colpitts-VCO.

Numerical Calculation of Vibrational Transition Probability for the Forced Morse Oscillator by Use of the Anharmonic Boson Operators

  • Lee, Chang Sun;Kim, Yu Hang
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.7
    • /
    • pp.721-726
    • /
    • 2001
  • The vibrational transition probability expressions for the forced Morse oscillator have been derived using the commutation relations of the anharmonic Boson operators. The formulation is based on the collinear collision model with the exponential repulsive potential in the framework of semiclassical collision dynamics. The sample calculation results for H2+ He collision system, where the anharmonicity is large, are in excellent agreement with those from an exact, numerical quantum mechanical study by Clark and Dickinson, using the reactance matrix. Our results, however, are markedly different from those of Ree, Kim and Shin's in which they approximate the commutation operator I。 as unity, the harmonic oscillator limit. We have concluded that the quantum number dependence in I。 must be retained to get accurate vibrational transition probabilities for the Morse oscillator.

Development of Millimeter-Wave band PLL System using YIG Oscillator (YIG 발진기를 이용한 밀리미터파대역의 PLL 시스템 개발)

  • Lee, Chang-Hoon;Kim, K.D.;Chung, M.H.;Kim, H.R.;Han, S.T.
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.116-119
    • /
    • 2005
  • In this paper, we propose the PLL system of the local oscillator system for the millimeter wave band's radio astronomy receiving system. The development of the proposed local oscillator system based on the YIG oscillator VCO with 26.5 ${\sim}$ 40GHz specification. This system consists of the oscillator part including the YIG VCO, the harmonic mixer, and the isolator, the RF processing part including the triplexer, limiter, and RF discrimination processor. and the PLL system including YIG modulator and controller. Based on this configuration. we verify the frequency and power stability of the developed local oscillator system according to some temperature variation. From this test results we confirm the stable output frequency and power characteristic performance of the developed La system at constant temperature.

  • PDF

Design and Implementation of a Phase Locked Dielectric Resonator Oscillator for Ka Band LNB with Triple VCOs (3중구조 VCO를 이용한 Ka Band LNB 용 PLDRO 설계 및 제작)

  • Kang, Dong-Jin;Kim, Dong-Ok
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2008.08a
    • /
    • pp.441-446
    • /
    • 2008
  • In this papers, a PLDRO(Phase Locked Dielectric Resonator Oscillator) is designed and implemented at the oscillator in which fundamental frequency is 18.3 GHz. The proposed PLDRO so as to improve the PLDRO of the general structure is designed to the goal of the minimize of the size and the performance improvement. Three VCO(Voltage controlled Oscillator) and the power combiner improved the output power. A VCDRO(Voltage Controlled Dielectric Resonator Oscillator) is manufactured using a varactor diode to tune oscillating frequency electrically, and its phase is locked to reference frequency by SPD(Sampling Phase Detector). This product is fabricated on Teflon substrate with dielectric constant 2.2 and device is ATF -13786 of Ka-band using. This PLDRO generates an output power of 5.67 dBm at 18.3 GHz and has the characteristics of a phase noise of -80.10 dBc/Hz at 1 kHz offset frequency from carrier, the second harmonic suppression of -33 dBc. The proposed PLDRO can be used in Ka-band satellite applications

  • PDF

Design of 5.5 GHz Band Oscillator for local wireless Communication system (근거리 무선통신용 5.5 GHz 대역 발진기 설계)

  • 김갑기
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.4
    • /
    • pp.787-792
    • /
    • 2004
  • This paper shows the design, fabrication and performance of oscillator appled to 5.5GHz RF module for local wireless communication system. Super low noise HJ FET of NE3210S01 is used to obtain a good phase noise Performance. The design Parameters for the optimum operating performance are simulated with ADS simulation. The measured out Power is 10 dBm at 5.5GHz, the second harmonic suppression -31 dBc, and the phase noise characteristics -98.83 dBc at 100kHz offset frequency, respectively. This implemented oscillator is available to local wireless Communication system.

Design and Fabrication of 5.5 GHz Band Oscillator for local wireless Communication system (근거리 무선통신용 5.5 GHz 대역 발진기 설계 및 제작)

  • 주성남;박청룡;부종배;이영수;김갑기
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2004.05b
    • /
    • pp.96-100
    • /
    • 2004
  • This paper shows the design, fabrication and performance of oscillator appled to 5.5GHz RF module for local wireless communication system. Super low noise HJ FET of NE3210S01 is used to obtain a good phase noise Performance. The design Parameters for the optimum operating performance are simulated with ADS simulation. The measured out Power is 10 ㏈m at 5.5GHz, the second harmonic suppression -31 ㏈c, and the phase noise characteristics -98.83 ㏈c at 100KHz offset frequency, respectively. This implemented oscillator is available to local wireless Communication system.

  • PDF

A Study on the Fabrication of K-band Local Oscillator Used Frequency Doubler Techniques (주파수 체배 기법을 이용한 K-대역 국부발진기 구현에 관한 연구)

  • 김장구;박창현;최병하
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.41 no.10
    • /
    • pp.109-117
    • /
    • 2004
  • In this paper, a K-band local oscillator composed of a VCDRO(Voltage Controlled Dielectric Resonator Oscillator), GaAs MESFET, and Reflector type frequency doubler has been designed and fabricated. TO obtain a good phase noise performance of a VCDRO, a active device was selected with a low noise figure and a low flicker noise MESFET and a dielectric resonator was used for selecting stable and high oscillation frequency. Especially, to have a higher conversion gain than a conventional doubler as well as a good harmonic suppression performance with circuit size reduced a doubler structure was employed as the Reflector type composed of a reflector and a open stub of quarter wave length for rejecting the unwanted harmonics. The measured results of fabricated oscillator show that the output power was 5.8 dBm at center frequency 12.05 GHz and harmonic suppression -37.98 dBc, Phase noise -114 dBc at 100 KHz offset frequency, respectively, and measured results show of fabricated frequency doubler, the output power at 5.8 dBm of input power is 1.755 dBm conversion gain 1.482 dB, harmonic suppression -33.09 dBc, phase noise -98.23 dBc at 100 KHz offset frequency, respectively. This oscillator could be available to a local oscillator in K-band which used frequency doubler techniques.

The Effect of the Collision Process Between Molecules on the Rates of Thermal Relaxation of the Translational-Rotational-Vibrational Energy Exchange (분자간 충돌과정에 따른 병진-회전-진동에너지의 이완율)

  • Heo, Joong-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.12
    • /
    • pp.1494-1500
    • /
    • 2004
  • A zero-dimensional direct simulation Monte Carlo(DSMC) model is developed for simulating diatomic gas including vibrational kinetics. The method is applied to the simulation of two systems: vibrational relaxation of a simple harmonic oscillator and translational-rotational-vibrational energy exchange process under heating and cooling. In the present DSMC method, the variable hard sphere molecular model and no time counter technique are used to simulate the molecular collision kinetics. For simulation of diatomic gas flows, the Borgnakke-Larsen phenomenological model is adopted to redistribute the translational and internal energies.

An Alternative Approach to Optimal Impulsive-Thrust Formation Reconfigurations in a Near-Circular-Orbit

  • Kim, Youngkwang;Park, Sang-Young;Park, Chandoek
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.160.1-160.1
    • /
    • 2012
  • We present an alternative approach for satellite formation reconfiguration by an optimal impulsive-thrust strategy to minimize the total characteristic velocity in a near-circular-orbit. Linear transformation decouples the Hill-Clohessy-Wiltshire(HCW) dynamics into a new block-diagonal system matrix consisting of 1-dimensional harmonic oscillator and 2-dimensional subsystem. In contrast to a solution based on the conventional primer vector theory, the optimal solution and the necessary conditions are represented as times and directions of impulses. New analytical expression of the total characteristic velocity is found for each sub systems under general boundary conditions including transfer time constraint. To minimize the total characteristic velocity, necessary conditions for times and directions of impulses are analytically solved. While the solution to the 1-dimensional harmonic oscillator has been found, the solution to the 2-dimensional subsystem is currently under construction. Our approach is expected to be applicable to more challenging problems.

  • PDF