• Title/Summary/Keyword: harmonic excitation

Search Result 290, Processing Time 0.031 seconds

Comparison of Harmonic Compensation Based on Wound/Squirrel-Cage Rotor Type Induction Motors With Flywheel (플라이휠을 장착한 농형/권선형 전동기를 이용한 두 고조파 보상 시스템의 비교)

  • 김윤호;이경훈;양성혁;박경수
    • Journal of the Korean Society for Railway
    • /
    • v.4 no.1
    • /
    • pp.16-22
    • /
    • 2001
  • This paper describes two different systems which can compensate harmonic currents generated in the power system. As non-linear loads increase gradually in industry fields, harmonic current generated in the electric power network system also increases. Harmonic current makes a power network current distorted and generates heat, vibration, noise in the power machinery. Many approaches have been applied to compensate harmonic currents generated in the power network system. Among various approaches, in this paper, two kinds of approaches are compared and evaluated. They are flywheel compensator based on secondary excitation of wounded rotor induction motor(WRIM) and primary excitation of squirrel cage induction motor(SCIM). Both systems have a common structure. They use a flywheel as a energy storage device and use PWM inverters.

  • PDF

Family of smart tuned mass dampers with variable frequency under harmonic excitations and ground motions: closed-form evaluation

  • Sun, C.;Nagarajaiah, S.;Dick, A.J.
    • Smart Structures and Systems
    • /
    • v.13 no.2
    • /
    • pp.319-341
    • /
    • 2014
  • A family of smart tuned mass dampers (STMDs) with variable frequency and damping properties is analyzed under harmonic excitations and ground motions. Two types of STMDs are studied: one is realized by a semi-active independently variable stiffness (SAIVS) device and the other is realized by a pendulum with an adjustable length. Based on the feedback signal, the angle of the SAIVS device or the length of the pendulum is adjusted by using a servomotor such that the frequency of the STMD matches the dominant excitation frequency in real-time. Closed-form solutions are derived for the two types of STMDs under harmonic excitations and ground motions. Results indicate that a small damping ratio (zero damping is the best theoretically) and an appropriate mass ratio can produce significant reduction when compared to the case with no tuned mass damper. Experiments are conducted to verify the theoretical result of the smart pendulum TMD (SPTMD). Frequency tuning of the SPTMD is implemented through tracking and analyzing the signal of the excitation using a short time Fourier transformation (STFT) based control algorithm. It is found that the theoretical model can predict the structural responses well. Both the SAIVS STMD and the SPTMD can significantly attenuate the structural responses and outperform the conventional passive TMDs.

Non-stationary vibration and super-harmonic resonances of nonlinear viscoelastic nano-resonators

  • Ajri, Masoud;Rastgoo, Abbas;Fakhrabadi, Mir Masoud Seyyed
    • Structural Engineering and Mechanics
    • /
    • v.70 no.5
    • /
    • pp.623-637
    • /
    • 2019
  • This paper analyzes the non-stationary vibration and super-harmonic resonances in nonlinear dynamic motion of viscoelastic nano-resonators. For this purpose, a new coupled size-dependent model is developed for a plate-shape nano-resonator made of nonlinear viscoelastic material based on modified coupled stress theory. The virtual work induced by viscous forces obtained in the framework of the Leaderman integral for the size-independent and size-dependent stress tensors. With incorporating the size-dependent potential energy, kinetic energy, and an external excitation force work based on Hamilton's principle, the viscous work equation is balanced. The resulting size-dependent viscoelastically coupled equations are solved using the expansion theory, Galerkin method and the fourth-order Runge-Kutta technique. The Hilbert-Huang transform is performed to examine the effects of the viscoelastic parameter and initial excitation values on the nanosystem free vibration. Furthermore, the secondary resonance due to the super-harmonic motions are examined in the form of frequency response, force response, Poincare map, phase portrait and fast Fourier transforms. The results show that the vibration of viscoelastic nanosystem is non-stationary at higher excitation values unlike the elastic ones. In addition, ignoring the small-size effects shifts the secondary resonance, significantly.

The Effect of Constant Excitation on Nonlinear Interactions in Vibrating Modes of Circular Plates - Part 1. The Equations of Motion (상수 가진력항이 원판의 진동모드사이의 비선형 상호작용에 미치는 영향 - 제 1 보 운동방정식)

  • Lee, Won-K.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.716-720
    • /
    • 2006
  • In order to examine the effect of constant excitation on nonlinear interactions in vibrating modes of circular plates, we added a constant term to a harmonic excitation. A two-degree-of freedom system is derived by using the Galerkin's procedure. The system is shown to have quadratic and cubic nonlinearities subjected to a harmonic excitation.

  • PDF

Approximate Response of a Non-linear Vibration Isolation System Using the Harmonic Balance Method (하모닉 밸런스법을 이용한 비선형 진동절연 시스템의 근사적 응답)

  • Lee, Gun-Myung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.6
    • /
    • pp.124-129
    • /
    • 2018
  • A non-linear vibration isolation system which is composed of a non-linear spring and a linear damper was proposed in past research. When the support of the isolation system is excited harmonically, the response component of the isolation system mass at the excitation frequency has been calculated approximately using the harmonic balance method. The response was approximated by a single mode, and the result was compared with a numerical result which is assumed as an accurate one. Next, the response was approximated by two modes, and the result was compared with the former one.

Voice Source Modeling Using Harmonic Compensated LF Model (LF 모델에 고조파 성분을 보상한 음원 모델링)

  • 이건웅;김태우홍재근
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.1247-1250
    • /
    • 1998
  • In speech synthesis, LF model is widely used for excitation signal for voice source coding system. But LF model does not represent the harmonic frequencies of excitation signal. We propose an effective method which use sinusoidal functions for representing the harmonics of voice source signal. The proposed method could achieve more exact voice source waveform and better synthesized speech quality than LF model.

  • PDF

Vibration-based damage alarming criteria for wind turbine towers

  • Nguyen, Cong-Uy;Huynh, Thanh-Canh;Dang, Ngoc-Loi;Kim, Jeong-Tae
    • Structural Monitoring and Maintenance
    • /
    • v.4 no.3
    • /
    • pp.221-236
    • /
    • 2017
  • In this study, the feasibility of vibration-based damage alarming algorithms are numerically evaluated for wind turbine tower structures which are subjected to harmonic force excitation. Firstly, the algorithm of vibration-based damage alarming for the wind turbine tower (WTT) is visited. The natural frequency change, modal assurance criterion (MAC) and frequency-response-ratio assurance criterion (FRRAC) are utilized to recognize changes in dynamic characteristics due to a structural damage. Secondly, a finite element model based on a real wind turbine tower is established in a structural analysis program, Midas FEA. The harmonic force is applied at the rotor level as presence of excitation. Several structural damage scenarios are numerically simulated in segmental joints of the wind turbine model. Finally, the natural frequency change, MAC and FRRAC algorithm are employed to identify the structural damage occurred in the finite element model. The results show that these criteria could be used as promising damage existence indicators for the damage alarming in wind turbine supporting structures.

Realistic Circuit Model of an Impact-Based Piezoelectric Energy Harvester

  • Kim, Sunhee;Ju, Suna;Ji, Chang-Hyeon;Lee, Seungjun
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.5
    • /
    • pp.463-469
    • /
    • 2015
  • A vibration-based energy harvester and its equivalent circuit models have been reported. Most models predict voltage signals at harmonic excitation. However, vibrations in a natural environment are unpredictable in frequency and amplitude. In this paper, we propose a realistic equivalent circuit model of a frequency-up-converting impact-based piezoelectric energy harvester. It can describe the behavior of the harvester in a real environment where the frequency and the amplitude of the excitation vary arbitrarily. The simulation results of the model were compared with experimental data and showed good agreement. The proposed model can predict both the impact response and long term response in a non-harmonic excitation. The model is also very useful to analyze the performance of energy conversion circuitry with the harvester.

Vibration Reaponse Analysis of frames with energy absober installed in Beams (보 제진 프레임의 진동응답해석)

  • Lee, Ho
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1997.10a
    • /
    • pp.159-166
    • /
    • 1997
  • The purpose of this thesis is to derive a theoretical model of the hysteretic resistance of the visco-elastic damper based on test results of harmonic excitation and to investigate of the basis of theory and experiment the effect of vibration control and response characteristics of portal frames degree vibration systems provided with the damper. The behaviour of a visco-elastic degree under dynamic loading is idealized by a model of the theory of visco-elasticity, i.e. a four-parameter model formed as a parallel combination of Maxwell fluid and Kelvin-Voigh models and its constitutive equation is derived. The model parameters are determined for a tested damper from the datas of harmonic excitation tests. The theoretical model of the damper is incorporated in equation fo motion of single degree of freedom. A computer program for solving the equation is written using Runge-kuttas's numerical integration scheme. Using this analysis program test cases of the earthquake excitation are simulated and the results of the simulation are the results of the simulation are the results of the simulation are compared with the test results.

  • PDF

Modified-Current-Differential Relay for Transformer Protection

  • Kang Yong-Cheol;Jin En-Shu;Won Sung-Ho
    • KIEE International Transactions on Power Engineering
    • /
    • v.5A no.1
    • /
    • pp.1-8
    • /
    • 2005
  • During magnetic inrush or over-excitation, saturation of the core in a transformer draws a significant exciting current, which can cause malfunction of a current-differential relay. This paper proposes a modified-current-differential relay for transformer protection. The relay calculates the core-loss current from the induced voltage and the core-loss resistance as well as the magnetizing current from the core flux and the magnetization curve. Finally, the relay obtains the modified differential current by subtracting the core-loss and the magnetizing currents from the conventional differential current. A comparative study of the conventional differential relay with harmonic blocking is presented. The proposed relay not only discriminates magnetic inrush and over-excitation from an internal fault, but also improves the relay speed.