• Title/Summary/Keyword: harmonic drive

Search Result 211, Processing Time 0.021 seconds

Hybrid PWM Modulation Technology Applied to Three-Level Topology-Based PMSMs

  • Chen, Yuanxi;Guo, Xinhua;Xue, Jiangyu;Chen, Yifeng
    • Journal of Power Electronics
    • /
    • v.19 no.1
    • /
    • pp.146-157
    • /
    • 2019
  • The inverter is an essential part of permanent magnet synchronous motor (PMSM) drive systems. The performance of an inverter is greatly influenced by its modulation strategy. Using a proper management of modulation strategies can guarantee high performance from a PMSM under various speed conditions. Switching between modulations is a pivotal technique that determines the performance of a PMSM. Most works on hybrid methods focus on two-level induction motors drive systems. In this paper, in order to improve the performance of PMSMs under various speed conditions, a hybrid method of a pulse width modulation (PWM) control scheme based on a neutral-point-clamped (NPC) three level topology was proposed. This hybrid PWM modulation comprised space vector PWM (SVPWM) and selective harmonic elimination PWM (SHEPWM). Under low speed conditions, the SVPWM is employed to cause the PMSM to start smoothly, and to obtain a rapid response from the control system. Under high speed conditions, the SHEPWM is employed to reduce the switching frequency and to eliminate particular current harmonics. Moreover, the harmonic characteristics of different modulations are analyzed to obtain a smooth transition between the SHEPWM and the SVPWM. Experimental and simulation results indicated the effectiveness of the proposed control method.

Subsection Synchronous Current Harmonic Minimum Pulse Width Modulation for ANPC-5L Inverter

  • Feng, Jiuyi;Song, Wenxiang;Xu, Yuan;Wang, Fei
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.5
    • /
    • pp.1872-1882
    • /
    • 2017
  • Medium voltage drive systems driven by high-power multi-level inverters operating at low switching frequency can reduce the switching losses of the power device and increase the output power. Employing subsection synchronous current harmonic minimum pulse width modulation (CHMPWM) technique can maintain the total harmonic distortion of current at a very low level. It can also reduce the losses of the system, improve the system control performance and increase the efficiency of DC-link voltage accordingly. This paper proposes a subsection synchronous CHMPWM approach of active neutral point clamped five-level (ANPC-5L) inverter under low switching frequency operation. The subsection synchronous scheme is obtained by theoretical calculation based on the allowed maximum switching frequency. The genetic algorithm (GA) is adopted to get the high-precision initial values. So the expected switching angles can be achieved with the help of sequential quadratic programming (SQP) algorithm. The selection principle of multiple sets of the switching angles is also presented. Finally, the validity of the theoretical analysis and the superiority of the CHMPWM are verified through both the simulation results and experimental results.

Line Current Characteristics of Multilevel H-Bridge Inverters: Part II - Harmonic Reduction with Multiple Transformer Windings (다단 H-브릿지 인버터의 입력전류특성(II) - 다중 변압기 결선에 의한 고조파 저감)

  • Jeong, Seung-Gi
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.13 no.3
    • /
    • pp.237-245
    • /
    • 2008
  • Recently, multilevel H-bridge inverters have become popular in medium to high power ac drive applications. One of significant advantages of them is low harmonic contents in their input line currents thanks to the transformer with multiple phase-shifted secondary windings. This paper attempts to provide basic guidelines for the design of the phase shifting transformer windings and theoretical analysis of input line current harmonics of H-bridge inverters. The part II is devoted to the analysis of the harmonic characteristics of the input line current, providing mathematical background for the equidistant phase-shifting angle distribution policy for harmonic elimination.

Torque Density Improvement of Five-Phase PMSM Drive for Electric Vehicles Applications

  • Zhao, Pinzhi;Yang, Guijie
    • Journal of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.401-407
    • /
    • 2011
  • In order to enhance torque density of five-phase permanent magnetic synchronous motor with third harmonic injection for electric vehicles (EVs) applications, optimum seeking method for injection ratio of third harmonic was proposed adopting theoretical derivation and finite element analysis method, under the constraint of same amplitude for current and air-gap flux. By five-dimension space vector decomposition, the mathematic model in two orthogonal space plane, $d_1-q_1$ and $d_3-q_3$, was deduced. And the corresponding dual-plane vector control method was accomplished to independently control fundamental and third harmonic currents in each vector plane. A five-phase PMSM prototype with quasi-trapezoidal flux pattern and its fivephase voltage source inverter were designed. Also, the dual-plane vector control was digitized in a single XC3S1200E FPGA. Simulation and experimental results prove that using the proposed optimum seeking method, the torque density of five-phase PMSM is enhanced by 20%, without any increase of power converter capacity, machine size and iron core saturation.

A Ripple Rejection Inherited RPWM for VSI Working with Fluctuating DC Link Voltage

  • Jarin, T.;Subburaj, P.;Bright, Shibu J V
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.5
    • /
    • pp.2018-2030
    • /
    • 2015
  • A two stage ac drive configuration consisting of a single-phase line commutated rectifier and a three-phase voltage source inverter (VSI) is very common in low and medium power applications. The deterministic pulse width modulation (PWM) methods like sinusoidal PWM (SPWM) could not be considered as an ideal choice for modern drives since they result mechanical vibration and acoustic noise, and limit the application scope. This is due to the incapability of the deterministic PWM strategies in sprawling the harmonic power. The random PWM (RPWM) approaches could solve this issue by creating continuous harmonic profile instead of discrete clusters of dominant harmonics. Insufficient filtering at dc link results in the amplitude distortion of the input dc voltage to the VSI and has the most significant impact on the spectral errors (difference between theoretical and practical spectra). It is obvious that the sprawling effect of RPWM undoubtedly influenced by input fluctuation and the discrete harmonic clusters may reappear. The influence of dc link fluctuation on harmonics and their spreading effect in the VSI remains invalidated. A case study is done with four different filter capacitor values in this paper and results are compared with the constant dc input operation. This paper also proposes an ingenious RPWM, a ripple dosed sinusoidal reference-random carrier PWM (RDSRRCPWM), which has the innate capacity of suppressing the effect of input fluctuation in the output than the other modern PWM methods. MATLAB based simulation study reveals the fundamental component, total harmonic distortion (THD) and harmonic spread factor (HSF) for various modulation indices. The non-ideal dc link is managed well with the developed RDSRRCPWM applied to the VSI and tested in a proto type VSI using the field programmable gate array (FPGA).

Analysis and design of two types of digital repetitive control systems (두가지 이산 반복제어 시스템의 해석 및 설계)

  • 장우석;김군진;김준동;서일홍
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.1051-1059
    • /
    • 1992
  • Two types of digital repetitive control systems are analyzed and designed to reduce the error spectrum including not only harmonic but also non-harmonic components. First, a novel gain scheduling algorithm is suggested for conventional and modified repetitive controller is scheduled to reduce the infinite norm of error in frequency domain. For this, the relative error transfer function is mewly defined as the ratio of the error spectrum for the system with a repetitive controller to the error spectrum for the system with a repetitive controller to the error spectrum for the system without a repetitive controller. Secondly, as an alternative of a repetitive control system with the gain scheduling, a repetitive control system with higher order repetitve function is analyzed and designed, where instead of equal weightings, weightings of the higher order repetitive function is determined in such a way that the infinite norm of relative error transfer function is minimized. To show the validities of proposed methods, computer simulation results are illustrated for a typical disk drive head positioning servo system.

  • PDF

Loss Modeling in order to Predict the Efficiency Performance of Induction Motor Drive System (유도전동기 드라이브 시스템의 효율성능을 예측하기 위한 손실 모델링)

  • 정동화;박기태;이정철
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.4
    • /
    • pp.56-61
    • /
    • 2000
  • The precise and reliable loss model for induction motor and converter system is very important in order to predict the efficiency performance of variable speed drives. This paper proposes an accurate loss model of induction motor and converter system. The motor losses, such as stator and rotor copper loss, core loss and stray loss, are considered for fundamental and harmonic frequencies. Also considered are the skin effect on rotor resistance, temperature effect on bath stator and rotor resistance, magnetizing inductance saturation, and friction and windage loss. All the above features are incorporated in a synchronous frame dynamic d-q equivalent circuit. The converter system, consisting of a diode rectifier and PWM transistor inverter, is modeled accurately for conduction and switching losses. Validity of the models, in both steady state and transient conditions, is verified by simulations.

  • PDF

Extension of the Operating Speed for Vector-Controlled Induction Machine Drives in the Overmodulation Range

  • Nguyen, Thanh Hai;Lee, Dong-Choon
    • Journal of Power Electronics
    • /
    • v.12 no.3
    • /
    • pp.477-486
    • /
    • 2012
  • This paper proposes a novel current control scheme for vector-controlled induction machine (IM) drives in the overmodulation (OVM) range, with which the voltage utilization of the voltage-source inverter (VSI) can be maximized. In the OVM region, the original voltage reference is modified by changing its magnitude and angle, which causes the motor current to be distorted, resulting in a deterioration of the current control performance. To meet with this situation, the harmonic components in the feedback currents should be eliminated before being input to the PI current controllers. For this, a composite observer is applied to extract the fundamental and harmonic components from the distorted currents, which gives a good performance without a delay and the effect of a fundamental frequency variation. In addition, through a detailed analysis of the response of the PI current controllers in the OVM range, the effectiveness of using the composite observer is demonstrated. Simulation and experimental results for a 3-kW induction motor drive are shown to verify the validity of the proposed method.

Optimal Switching Pattern of SHE PWM for drive Three Phase Voltage Type Inverter (3상 전압형 인버어터를 구동하기 위한 SHE PWM의 최적 스위칭 패턴)

  • Lee, Yoon-Jong;Chung, Dong-Wha;Kim, Hyenk-Ju
    • Proceedings of the KIEE Conference
    • /
    • 1987.11a
    • /
    • pp.347-350
    • /
    • 1987
  • This paper is proposed the optimal switching pattern of sleeted harmonic elimination (SHE PWM). It defined harmonic elimination band (HBE) to find the solution of Constant Voltage (CV), and sought all solutions which we are included HEB. Then, it calculated generalised klirr factor (GKF) by this solution and decided optimal switching pattern, used as initial conditions of newton raphson (NR) method to decide switching pattern at variable voltage (W). This strategy is applied to 1HP three phase induction motor. From the result, the validity of theoretical proposition can be verified.

  • PDF

AC-DC Converter for Electrolytic Capacitor-less LED Driver with Reduced LED Peak Current (LED 구동전류의 피크값이 저감된 전해 커패시터 없는 AC-DC 컨버터)

  • Kang, Kyoung-Suk;Park, Gwon-Sik;Seo, Byung-Jun;Nho, Eui-Cheol
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.1
    • /
    • pp.59-65
    • /
    • 2018
  • A new single-stage flyback power converter with PFC for electrolytic capacitor-less LED driver is proposed in this study. This method minimizes the peak-to-average ratio of the LED driving pulsating current by adding the LED driving current near the LED current valley area, as well as the third harmonic component injection into the input current. The reduced peak current value of the LED drive current minimizes the thermal stress of the LED itself, thereby increasing the reliability of the LED, as well as achieving a long lifetime. Simulation and experimental results show the usefulness of the proposed topology.