• Title/Summary/Keyword: harmonic current filter

Search Result 303, Processing Time 0.022 seconds

Versatile Shunt Hybrid Power Filter to Simultaneously Compensate Harmonic Currents and Reactive Power

  • Trinh, Quoc-Nam;Lee, Hong-Hee
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.1311-1318
    • /
    • 2015
  • This paper introduces a novel topology and an effective control strategy for a shunt hybrid power filter (SHPF) to simultaneously compensate harmonic currents and reactive power. The proposed SHPF topology is composed of an LC passive filter tuned to the 7th harmonic frequency and a small-rated active filter connected in parallel with the inductor Lpf of the LC passive filter. Together with the SHPF topology, we also propose a control strategy, which consists of a proportional-integral (PI) controller for DC-link voltage regulation and a PI plus repetitive current controller, in order to compensate both the harmonic current and the reactive power without the need for additional hardware. Thanks to the effectiveness of the proposed control scheme, the supply current is sufficiently compensated to be sinusoidal and in-phase with the supply voltage, regardless of the distorted and phase lagging of the load current. The effectiveness of the proposed SHPF topology and control strategy is verified by simulated and experimental results.

Novel Current Compensation Technique for Harmonic Current Elimination (고조파 전류 제거를 위한 새로운 전류 보상 기법)

  • Jeong Gang-Youl
    • Proceedings of the KIPE Conference
    • /
    • 2004.07b
    • /
    • pp.587-591
    • /
    • 2004
  • This paper proposes a novel current compensation technique that can eliminate the harmonic currents included in line currents without computation of harmonic current components. A current controller with fast dynamics for an active filter is described. Harmonic currents are directly controlled without the need for sensing and computing the harmonic current of the load current, thus simplifying the control system. Current compensation is done in the time domain, allowing a fast time response. The DC voltage control loop keeps the voltage across the DC capacitor constant. High power factor control by an active filter is described. All control functions are implemented in software using a single-chip microcontroller, thus simplifying the control circuit. Any current-controlled synchronous rectifier can be used as a shunt active filter through only the simple modification of the software and the addition of current sensors. It is shown through experimental results that the proposed controller gives good performance for the shunt active filter.

  • PDF

AC harmonic elimination and reactive power compensation by voltage-type active filter (전압형 능동필터에 의한 교류고조파제거와 무효전력보상)

  • 김한성;최규하;신우석;이제필
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10a
    • /
    • pp.688-692
    • /
    • 1988
  • The active filter system for harmonic current compensation is presented in this paper. The active filter, composed of a three-phase voltage-type PWM inverter and the capacitor, compensates both the harmonic currents and the reactive power by injecting the PWM current to the ac line. This paper describes the principle of harmonic current compensation, the calculation circuits for the harmonic currents to be injected, the several compensation characteristics. Also the experimental results are shown to verify the theory proposed in this paper.

  • PDF

A Proposal of Compact Passive Harmonic Filter for ac Motor Drive (고성능 콤팩트형 AC모터드라이브 고조파 필터 제안)

  • Park, Byung-Ju;Yoon, Dong-Chul;Oh, Jeong-Cheol;Bae, Byung-Yeol;Hwang, An-Il;Yoo, Hang-Kyu;Choi, Seok-Keun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.67 no.4
    • /
    • pp.191-199
    • /
    • 2018
  • The harmonic reduction method of ac motor drive, ACL and DCL were commonly used, but the current distortion ratio was only 35%, thus the several different types of filters as BBHF(broad band harmonic filter), HHF(hybrid harmonic filter), NHHF(new hybrid harmonic filter) have been developed to satisfy the IEEE Std. 519 harmonic limitation. However, these filters had been limited marketability due to cost and size problems. This study suggests the methods to reduce cost and size of the harmonic filter including topologies, besides we discussed simulation results of the power system with regard to the implementation and performance of the filters.

The comparison of harmonic detection methods on the Power line (상용(220V/60Hz)전원의 고조파 검출 방식의 비교)

  • Jung Dong-Youl;Hwang Hwan-Young;Park Chong-Yeun
    • Proceedings of the KIPE Conference
    • /
    • 2004.07b
    • /
    • pp.883-886
    • /
    • 2004
  • The current harmonic detector consists of the load current detector and the notch filter. It obtains the harmonic current from the output of the load current detector using the Notch filter. The GIC in the notch filter is used instead of inductor to minimize the magnitude and phase characteristics variation caused by using twin-T notch filter and passive elements(inductor).

  • PDF

A Study on Tuning Factor(δ) and Quality Factor(Q) Values in Design of Single-Tuned Passive Harmonic Filters (단일동조 수동고조파필터 설계시의 동조계수(δ) 및 양호도(Q)값 연구)

  • Cho, Young-Sik;Cha, Han-Ju
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.1
    • /
    • pp.64-70
    • /
    • 2010
  • This paper presents how to decide on tuning factor(${\delta}$) and quality factor(Q) values in design of single-tuned passive harmonic filters. Tuning factor(${\delta}$) and quality factor(Q) values have to consider before decision on circuit parameters of passive filters. A Study on these two value has not been scarcely performed and only experienced values has been used in passive harmonic filter design by far. As a experienced value, in cases of 5th and 7th filter, tuning factor(${\delta}$) is about 0.94 and 0.96 respectively and quality factor(Q) is, in all cases of, 50. If Single-tuned passive harmonic filter will be off-tuned, performance of filter will be decreased steeply and occur to parallel resonance between system reactance and filter capacitance. Therefore During the operation, In order not to off-tuning, Filter must be tuned at former order than actual tuning order. This is the same that total impedance of filter must have a reactive impedance. In this paper, Tuning factor(${\delta}$) is decided via example of real system and using the bode-plot and then performance of filters confirmed by filter current absorbtion rate. And Quality factor(Q) decided using the bode plot in example system and then performance of filters confirmed by filter current absorbtion rate also, which makes a calculated filter parameters to satisfy IEEE-519 distortion limits. Finally, Performance of the designed passive harmonic filter using the tuning factor(${\delta}$) and quality factor(Q) values, decided in this paper is verified by experiment and shows that 5th, 7th, 9th, 11th and 13th current harmonic distortions are decreased within IEEE-519 distortion limits, respectively.

An Advanced Three-Phase Active Power Filter with Adaptive Neural Network Based Harmonic Current Detection Scheme

  • Rukonuzzaman, M.;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • v.2 no.1
    • /
    • pp.1-10
    • /
    • 2002
  • An advanced active power filter for the compensation of instantaneous harmonic current components in nonlinear current load is presented in this paper. A novel signal processing technique using an adaptive neural network algorithm is applied for the detection of harmonic components generated by three-phase nonlinear current loads and this method can efficiently determine the instantaneous harmonic components in real time. The control strategy of the switching signals to compensate current harmonics of the three-phase inverter is also discussed and its switching signals are generated with the space voltage vector modulation scheme. The validity of this active filtering processing system to compensate current harmonics is substantiated on the basis of simulation results.

Development of a Novel Passive Harmonic Filter (신개념 수동형 고조파 필터 개발과 성능에 관한 평가)

  • Park, Byoung-Ju;Lee, Han-Sang;Jang, Gil-Soo
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.55 no.1
    • /
    • pp.29-36
    • /
    • 2006
  • The interest for harmonic problems has been increasing due to the increment of nonlinear loads. The loads such as DC power system, personal computers, UPS system, inverters and converters operate as harmonic current sources. In this paper, a new type of the passive filter, Hybrid Harmonic Filter (HHF) is suggested to mitigate harmonic problems in power systems. The HHF is developed for reducing harmonic current, especially on the system that includes 6-pulse bridge rectifiers. Also, it is expected to prevent the overheating of transformers and feeders due to overcurrent and to correct the power factor.

Automatic Power Factor Correction Using a Harmonic-Suppressed TCR Equipped with a New Adaptive Current Controller

  • Obais, Abdulkareem Mokif;Pasupuleti, Jagadeesh
    • Journal of Power Electronics
    • /
    • v.14 no.4
    • /
    • pp.742-753
    • /
    • 2014
  • In this paper, a new continuously and linearly controlled capacitive static VAR compensator is proposed for the automatic power factor correction of inductive single phase loads in 220V 50Hz power system networks. The compensator is constructed of a harmonic-suppressed TCR equipped with a new adaptive current controller. The harmonic-suppressed TCR is a new configuration that includes a thyristor controlled reactor (TCR) shunted by a passive third harmonic filter. In addition, the parallel configuration is connected to an AC source via a series first harmonic filter. The harmonic-suppressed TCR is designed so that negligible harmonic current components are injected into the AC source. The compensator is equipped with a new adaptive closed loop current controller, which responds linearly to reactive current demands. The no load operating losses of this compensator are negligible when compared to its capacitive reactive current rating. The proposed system is validated on PSpice which is very close in terms of performance to real hardware.

A Design of Three-phase Hybrid Power Filter System for DC Loads (직류 부하에 대한 3상 복합형 전력 필터 설계)

  • 조동길
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.379-384
    • /
    • 2000
  • The reactive and harmonic current components of dc loads can be compensated by the three-phase hybrid power filter (HPF) system. After compensation, the resulting current has sinusoidal and in-phase components with the source voltage. The HPF system is constructed by an active filter and passive filters. The passive filter reduce the 5th and 7th harmonic of the load current. The active filter compensates the remainder of the load current. Using the HPF system, a low cost harmonic compensator can be made. Performance of the HPF system is verified through simulation,

  • PDF