• Title/Summary/Keyword: harmful cyanobacteria

Search Result 50, Processing Time 0.032 seconds

Comparative Phenotypic Analysis of Anabaena sp. PCC 7120 Mutants of Porin-like Genes

  • Schatzle, Hannah;Brouwer, Eva-Maria;Liebhart, Elisa;Stevanovic, Mara;Schleiff, Enrico
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.5
    • /
    • pp.645-658
    • /
    • 2021
  • Porins are essential for the viability of Gram-negative bacteria. They ensure the uptake of nutrients, can be involved in the maintenance of outer membrane integrity and define the antibiotic or drug resistance of organisms. The function and structure of porins in proteobacteria is well described, while their function in photoautotrophic cyanobacteria has not been systematically explored. We compared the domain architecture of nine putative porins in the filamentous cyanobacterium Anabaena sp. PCC 7120 and analyzed the seven candidates with predicted OprB-domain. Single recombinant mutants of the seven genes were created and their growth capacity under different conditions was analyzed. Most of the putative porins seem to be involved in the transport of salt and copper, as respective mutants were resistant to elevated concentrations of these substances. In turn, only the mutant of alr2231 was less sensitive to elevated zinc concentrations, while mutants of alr0834, alr4741 and all4499 were resistant to high manganese concentrations. Notably the mutant of alr4550 shows a high sensitivity against harmful compounds, which is indicative for a function related to the maintenance of outer membrane integrity. Moreover, the mutant of all5191 exhibited a phenotype which suggests either a higher nitrate demand or an inefficient nitrogen fixation. The dependency of porin membrane insertion on Omp85 proteins was tested exemplarily for Alr4550, and an enhanced aggregation of Alr4550 was observed in two omp85 mutants. The comparative analysis of porin mutants suggests that the proteins in parts perform distinct functions related to envelope integrity and solute uptake.

Investigation of AI-based dual-model strategy for monitoring cyanobacterial blooms from Sentinel-3 in Korean inland waters

  • Hoang Hai Nguyen;Dalgeun Lee;Sunghwa Choi;Daeyun Shin
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.168-168
    • /
    • 2023
  • The frequent occurrence of cyanobacterial harmful algal blooms (CHABs) in inland waters under climate change seriously damages the ecosystem and human health and is becoming a big problem in South Korea. Satellite remote sensing is suggested for effective monitoring CHABs at a larger scale of water bodies since the traditional method based on sparse in-situ networks is limited in space. However, utilizing a standalone variable of satellite reflectances in common CHABs dual-models, which relies on both chlorophyll-a (Chl-a) and phycocyanin or cyanobacteria cells (Cyano-cell), is not fully beneficial because their seasonal variation is highly impacted by surrounding meteorological and bio-environmental factors. Along with the development of Artificial Intelligence (AI), monitoring CHABs from space with analyzing the effects of environmental factors is accessible. This study aimed to investigate the potential application of AI in the dual-model strategy (Chl-a and Cyano-cell are output parameters) for monitoring seasonal dynamics of CHABs from satellites over Korean inland waters. The Sentinel-3 satellite was selected in this study due to the variety of spectral bands and its unique band (620 nm), which is sensitive to cyanobacteria. Via the AI-based feature selection, we analyzed the relationships between two output parameters and major parameters (satellite water-leaving reflectances at different spectral bands), together with auxiliary (meteorological and bio-environmental) parameters, to select the most important ones. Several AI models were then employed for modelling Chl-a and Cyano-cell concentration from those selected important parameters. Performance evaluation of the AI models and their comparison to traditional semi-analytical models were conducted to demonstrate whether AI models (using water-leaving reflectances and environmental variables) outperform traditional models (using water-leaving reflectances only) and which AI models are superior for monitoring CHABs from Sentinel-3 satellite over a Korean inland water body.

  • PDF

Superiority comparison of biologically derived algicidal substances (naphthoquinone derivative) with other optional agents using microcosm experiments (Microcosm 실험을 이용한 생물유래 살조물질 Naphthoquinone 유도체의 유해 남조류 제어효과 및 기존물질과의 우수성 비교)

  • Joo, Jae-Hyoung;Park, Bum Soo;Kim, Sae Hee;Han, Myung-Soo
    • Korean Journal of Environmental Biology
    • /
    • v.38 no.1
    • /
    • pp.114-126
    • /
    • 2020
  • Bloom-forming toxic cyanobacteria Microcystis spp. are common in the summer season in temperate freshwater ecosystems. Often, it leads to the degradation of water quality and affects the quality of drinking water. In a previous study, NQ (naphthoquinone) compounds were shown to be effective, selective, and ecologically safe algicides for Microcystis spp. blooms. To analyze the superiority of developed NQ derivatives, we conducted a microcosm experiment using clay, which is frequently used in South Korea. Similar to previous studies, the NQ 40 and NQ 2-0 compounds showed high algicidal activities of 99.9% and 99.6%, respectively, on Microcystis spp. at low concentrations (≥1 μM) and enhanced phytoplankton species diversity. However, when treated with clay, a temporary algicidal effect was seen at the beginning of the experiment that gradually increased at the end. In addition, treatment with the NQ compounds did not affect either the abiotic or biological factors, and similar trends were observed with the control. These results showed that the NQ 2-0 compound was more effective, with no ecosystem disturbance, and more economical than the currently used clay. These results suggest that NQ 2-0 compound could be a selective, economically and ecologically safe algicide to mitigate harmful cyanobacterial blooms in the field.

Analysis of performance changes based on the characteristics of input image data in the deep learning-based algal detection model (딥러닝 기반 조류 탐지 모형의 입력 이미지 자료 특성에 따른 성능 변화 분석)

  • Juneoh Kim;Jiwon Baek;Jongrack Kim;Jungsu Park
    • Journal of Wetlands Research
    • /
    • v.25 no.4
    • /
    • pp.267-273
    • /
    • 2023
  • Algae are an important component of the ecosystem. However, the excessive growth of cyanobacteria has various harmful effects on river environments, and diatoms affect the management of water supply processes. Algal monitoring is essential for sustainable and efficient algae management. In this study, an object detection model was developed that detects and classifies images of four types of harmful cyanobacteria used for the criteria of the algae alert system, and one diatom, Synedra sp.. You Only Look Once(YOLO) v8, the latest version of the YOLO model, was used for the development of the model. The mean average precision (mAP) of the base model was analyzed as 64.4. Five models were created to increase the diversity of the input images used for model training by performing rotation, magnification, and reduction of original images. Changes in model performance were compared according to the composition of the input images. As a result of the analysis, the model that applied rotation, magnification, and reduction showed the best performance with mAP 86.5. The mAP of the model that only used image rotation, combined rotation and magnification, and combined image rotation and reduction were analyzed as 85.3, 82.3, and 83.8, respectively.

Characterization of Filamentous Cyanobacteria Encapsulated in Alginate Microcapsules (알긴산염 마이크로캡슐 내부에 동결보존된 사상체 남세균의 특성 연구)

  • Park, Mirye;Kim, Z-Hun;Nam, Seung Won;Lee, Sang Deuk;Yun, Suk Min;Kwon, Dae Ryul;Lee, Chang Soo
    • Microbiology and Biotechnology Letters
    • /
    • v.48 no.2
    • /
    • pp.205-214
    • /
    • 2020
  • Cyanobacteria are microorganisms which have important roles in the nitrogen cycle due to their ability to fix nitrogen in water and soil ecosystems. They also produce valuable materials that may be used in various industries. However, some species of cyanobacteria may limit the use of water resources by causing harmful algal blooms in water ecosystems. Many culture collection depositories provide cyanobacterial strains for research, but their systematic preservation is not well-developed in Korea. In this study, we developed a method for the cryopreservation of the cyanobacteria Trichormus variabilis (syn. Anabaena variabilis), using alginate microcapsules. Two approaches were used for the experiments and their outputs were compared. One of the methods involved the cryopreservation of cells using only a cryoprotectant and the other used the cryoprotectant within microcapsules. After cryopreservation for 35 days, cells preserved with both methods were successfully regenerated from the initial 1.0 × 105 cells/ml to a final concentration of 6.7 × 106 cells/ml and 1.1 × 107 cells/ml. Irregular T. variabilis shapes were found after 14 days of regeneration. T. variabilis internal structures were observed by transmission electron microscopy (TEM), revealing that lipid droplets were reduced after cryopreservation. The expression of the mreB gene, known to be related to cell morphology, was downregulated (54.7%) after cryopreservation. Cryopreservation using cryoprotectant alone or with microcapsules is expected to be applicable to other filamentous cyanobacteria in the future.

Isolation of Bacterial Strains Inhibiting the Growth of Microcystis aeruginosa and Cyanobacterium Growth Inhibition Assay (녹조 원인 남세균 Microcystis aeruginosa의 생장을 억제하는 세균균주의 분리 및 남세균 생장 억제능 검정)

  • Chung, Seon-Yong;Ko, Joon-IL;Kwon, Bum-Gun;Salma, Umme
    • Journal of Wetlands Research
    • /
    • v.19 no.4
    • /
    • pp.443-450
    • /
    • 2017
  • The objective of this study was to isolate algae growth inhibiting microorganism to biologically control Microcystis aeruginosa, which is a harmful cyanobacterium. Various bacterial strains were isolated in this study, and four bacterial strains of M1~M4 exhibited remarkable growth inhibiting activity against M. aeruginosa. Based on the 16S rRNA analysis, the isolated M1~M4 strains were identified, and isolated four strains were rod-type and gram-negative. In particular, as well as respective single strain, co-culture of the isolated M1~M4 strains showed obvious algicidal activity against M. aeruginosa. When mixed four strains were inoculated, about 50% of the chlorophyll a was reduced after two days, about 70% after four days, and about 80% after seven days. From these results mentioned above, the four bacterial strains may contribute to the control of harmful M. aeruginosa.

Microbial Colonization of the Aquatic Duckweed, Spirodela polyrhiza, during Development (수생식물 개구리밥 (Spirodela polyrhiza)과 미생물)

  • Kim, In-Sun
    • Applied Microscopy
    • /
    • v.34 no.2
    • /
    • pp.103-111
    • /
    • 2004
  • Fresh specimens of the aquatic macrophyte, Spirodela polyrhiza, have been examined employing scanning and transmission electron microscopy. Observations revealed the occurrence of microbial colonization during development. Submerged parts of the small, free-floating S. polyrhiza body exhibited a variety of microorganisms such as bacteria, cyanobacteria, and diatoms throughout their development. However, immature and/or young plants normally demonstrated much less microbial colonization compared to mature plants. During the study, heavy colonization by the microorganisms was routinely encountered at maturity, especially in the fully developed abaxial fronds and root caps. The mucilaginous layer was shown along the root caps, and the microorganisms appeared to be either clustered or attached to this layer. In contrast, only moderate degrees of colonization were observed in the root, and little to no colonization was observable in the adaxial frond surface. Transmission electron microscopy clearly demonstrated the microbial colonization to be external in the S. polyrhiza specimen examined in the current study. The association between the microorganisms and S. polyrhiza has been considered non-harmful, as no frond senescence and almost no mechanical penetration of the plant by the microorganisms were noticed during the study.

Lichen-Associated Bacterium, a Novel Bioresource of Polyhydroxyalkanoate (PHA) Production and Simultaneous Degradation of Naphthalene and Anthracene

  • Nahar, Shamsun;Jeong, Min-Hye;Hur, Jae-Seoun
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.1
    • /
    • pp.79-90
    • /
    • 2019
  • Lichens are generally known as self-sufficient, symbiotic life-forms between fungi and algae/cyanobacteria, and they also provide shelter for a wide range of beneficial bacteria. Currently, bacterial-derived biodegradable polyhydroxyalkanoate (PHA) is grabbing the attention of many researchers as a promising alternative to non-degradable plastics. This study was conducted to develop a new method of PHA production using unexplored lichen-associated bacteria, which can simultaneously degrade two ubiquitous industrial toxins, anthracene and naphthalene. Here, 49 lichen-associated bacteria were isolated and tested for PHA synthesis. During the GC-MS analysis, a potential strain of EL19 was found to be a 3-hydroxyhexanoate (3-HHx) accumulator and identified as Pseudomonas sp. based on the 16S rRNA sequencing. GC analysis revealed that EL19 was capable of accumulating 30.62% and 19.63% of 3-HHx from naphthalene and anthracene, respectively, resulting in significant degradation of 98% and 96% of naphthalene and anthracene, respectively, within seven days. Moreover, the highly expressed phaC gene verified the genetic basis of $PHA_{mcl}$ production under nitrogen starvation conditions. Thus, this study strongly supports the hypothesis that lichen-associated bacteria can detoxify naphthalene and anthracene, store energy for extreme conditions, and probably help the associated lichen to live in extreme conditions. So far, this is the first investigation of lichen-associated bacteria that might utilize harmful toxins as feasible supplements and convert anthracene and naphthalene into eco-friendly 3-HHx. Implementation of the developed method would reduce the production cost of $PHA_{mcl}$ while removing harmful waste products from the environment.

Draft Genome Database Construction from Four Strains (NIES-298, FCY-26, -27, and -28) of the Cyanobacterium Microcystis aeruginosa

  • Rhee, Jae-Sung;Choi, Beom-Soon;Han, Jeonghoon;Hwang, Soon-Jin;Choi, Ik-Young;Lee, Jae-Seong
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.9
    • /
    • pp.1208-1213
    • /
    • 2012
  • Microcystis aeruginosa is a cyanobacterium that can form harmful algal blooms (HABs) producing toxic secondary metabolites. We provide here draft genome information of four strains of this freshwater cyanobacterium that was obtained by the Next Generation Sequencing approach to provide a better understanding of molecular mechanisms at the physiological and ecological levels. After gene assembly, genes of each strain were identified and annotated, and a genome database and G-browser of M. aeruginosa were subsequently constructed. Such genome information resources will enable us to obtain useful information for molecular ecological studies with a better understanding of modulating mechanisms of environmental factors associated with blooming.

Analysis of Water Quality Improvement of Ceratophyllum demersum under Laboratory Condition - by Nutrients Removal Efficiency (실험실 조건에서 붕어마름의 수질개선 효과 분석 - 영양염류 제거 효율을 중심으로)

  • Ahn, Chang Hyuk;Joo, Jin Chul;Joo, Won Jung;Ahn, Hosang;Lee, Saeromi;Oh, Ju Hyun;Song, Ho Myeon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.4
    • /
    • pp.283-288
    • /
    • 2013
  • To evaluate the ability of the submerged plant, Ceratophyllum demersum's (C. demersum) to remove nutrients and to inhibit growth of cyanobacteria, a total of 6 mesocosms were conducted in a batch reactor for 9 days. From the 84 hr of the experiment, C. demersum was stabilized and showed daily cycle trends according to changes in pH and DO levels. The concentration of nutrients, $NH_3{^+}$, $NO_3{^-}$ and $PO_4{^3}$ continuously decreased until 9 days of the experiment, with the rapid decrease in nutrient concentration for the first 24 hours. High correlation coefficient ($r^2{\geq}0.96$, p<0.001) between the amount of C. demersum's biomass per unit area and the nutrients removal level were derived, and greater C. demersum's biomass per unit area showed higher removal efficiency of nutrients. However, there were differences in the C. demersum's activity level between batch reactors with higher and similar density of the C. demersum, but nonetheless water purification effect appears to have a significant influence due to attached algae and microorganisms. The growth rate of harmful cyanobacteria, Microcystis aeruginosa (M. aeruginosa) with C. demersum's density of 2,500 g $fw/m^2$ (100% of cover degree) was 0.31 /day, compared to the growth rate of 0.47 /day for the control group (0% of cover degree). In terms of number of cells, the control group had 1.7 times higher number of cells than the experimental group, proving that C. demersum has the ability to inhibit the growth of harmful cyanobacteria.